2010(8 задач)
2011(8 задач)
2012(8 задач)
2013(8 задач)
2014(8 задач)
2015(8 задач)
2016(8 задач)
2017(8 задач)
Московская областная олимпиада(13 задач)
Кировская открытая областная олимпиада(21 задач)
Санкт-Петербург(3 задач)
Володя написал программу, которая складывает в столбик два числа. К сожалению, он не разобрался, как правильно переносить единицу из одного разряда в следующий. Поэтому программа стала выполняться следующим образом. Сначала она складывает последние цифры обоих чисел и записывает результат, как в случае, если он однозначный, так и в случае, если он двузначный. Затем программа складывает предпоследние цифры обоих чисел и результат сложения приписывает слева к результату предыдущего сложения. Далее процесс повторяется для всех разрядов. Если в одном числе цифр меньше, чем в другом, то программа размещает нули в соответствующих разрядах более короткого числа.
Федя хочет доказать Володе, что его способ сложения не обладает свойством ассоциативности. В частности, Федя утверждает, что существуют три числа, для которых важен порядок, в котором их складывают (при этом разрешается складывать числа в любом порядке, например можно сначала сложить первое число и последнее, а затем прибавить к ним среднее). Федя привел даже пример трех таких чисел.
Требуетсянаписать программу, которая поможет Феде и Володе определить, верно ли утверждение, что, складывая заданные три числа в разном порядке, можно получить разные суммы.
Входной файл содержит в одной строке три целых числа a, b и c (1 ≤ a, b, c ≤ 1 000 000). Все числа в строке разделены пробелом.
В первую строку выходного файла необходимо вывести слово YES, если данные три числа можно сложить разными способами и получить разные суммы. В противном случае, необходимо вывести слово NO.
В последующих строках выходного файла необходимо вывести все возможные суммы, которые можно получить, складывая числа a, b и c. Суммы следует выводить по одной на строке и в порядке их возрастания.
Разбалловка для личной олимпиады
Тесты 1-2 — из условия. Оцениваются в 0 баллов.
Тесты 3-8 — все входные числа не превосходят 99. Группа тестов оценивается в 24 балла.
Тесты 9-16 — все входные числа не превосходят 9999. Группа тестов оценивается в 32 балла (вместе с предыдущей группой — 56 баллов).
Тесты 17-27 — дополнительных ограничений нет. Группа тестов оценивается в 44 балла (вместе с предыдущими группами — 100 баллов).
Баллы начисляются за прохождение всех тестов группы и всех тестов предыдущих групп. При выставлении баллов за отдельные тесты каждый тест (кроме тестов из условия) оценивается в 4 балла.
30 239 566
YES 7945 71215
Решая задачу по информатике, Вова в очередной раз допустил ошибку. Он снова вывел в выходной файл числа, забыв разделить их пробелами. Увидев полученный результат, Вова сначала огорчился, а потом задумался над следующим вопросом: сколько существует различных последовательностей неотрицательных целых чисел, таких что, если выписать их без пробелов, то получится тот же результат, что и у него. Он вспомнил также, что его программа смогла вывести не произвольные числа, а только те, что не превосходят C и не имеют ведущих нулей.
Чтобы ответить на поставленный вопрос, Вова решил написать программу, которая позволит ему найти число различных последовательностей неотрицательных целых чисел, в каждой из которых любое число не превосходит C. Он понимал, что такое число могло быть достаточно большим, поэтому ограничился поиском только последних k цифр этого числа.
Требуется написать программу, которая покажет Вове, как можно правильно решить поставленную им задачу.
Первая строка входного файла содержит три целых числа — n, C и k (1 ≤ n ≤ 50000, 1 ≤ C ≤ 108, 1 ≤ k ≤ 18). Во второй строке этого файла содержится результат работы Вовиной программы, состоящий из n цифр.
В выходной файл выведите последние k цифр искомого количества последовательностей (без ведущих нулей).
Разбалловка для личной олимпиады
Тесты 1-8 — \(n \le 7\) Оценивается в 30 баллов.
Тесты 9-53 — дополнительных ограничений нет. Группа тестов оценивается в 70 баллов.
3 11 2 111
3
19 9 1 0123456789876543210
1
1 8 3 9
0
Задано множество из n различных натуральных чисел. Перестановку элементов этого множества назовем k-перестановкой, если для любых двух соседних элементов этой перестановки их наибольший общий делитель не менее k. Например, если задано множество элементов S = {6, 3, 9, 8}, то перестановка {8, 6, 3, 9} является 2-перестановкой, а перестановка {6, 8, 3, 9} – нет.
Перестановка {p1, p2, …, pn} будет лексикографически меньше перестановки {q1, q2, …, qn}, если существует такое натуральное число i (1 ≤ i ≤ n), для которого pj = qj при j < i и pi < qi.
В качестве примера упорядочим все k-перестановки заданного выше множества в лексикографическом порядке. Например, существует ровно четыре 2-перестановки множества S: {3, 9, 6, 8}, {8, 6, 3, 9}, {8, 6, 9, 3} и {9, 3, 6, 8}. Соответственно, первой 2-перестановкой в лексикографическом порядке является множество {3, 9, 6, 8}, а четвертой – множество {9, 3, 6, 8}.
Требуется написать программу, позволяющую найти m-ую k-перестановку в этом порядке.
Входной файл в первой строке содержит три натуральных числа – n (1 ≤ n ≤ 16), m и k (1 ≤ m, k ≤ 109). Вторая строка содержит n различных натуральных чисел, не превосходящих 109. Все числа в строках разделены пробелом.
В выходной файл необходимо вывести m-ую k-перестановку заданного множества или –1, если такой нет.
Разбалловка для личной олимпиады
Тесты 1-3 — из условия. Оцениваются в 0 баллов.
Тесты 4-17 — \(n\le 4\). Группа тестов оценивается в 28 баллов.
Тесты 18-28 — \(n\le 10\). Группа тестов оценивается в 22 балла (вместе с предыдущей группой — 50 баллов).
Тесты 29-53 — дополнительных ограничений нет. Группа тестов оценивается в 50 баллов (вместе с предыдущими группами — 100 баллов).
Баллы начисляются за прохождение всех тестов группы и всех тестов предыдущих групп. При выставлении баллов за отдельные тесты каждый тест (кроме тестов из условия) оценивается в 2 балла.
4 1 2 6 8 3 9
3 9 6 8
4 4 2 6 8 3 9
9 3 6 8
4 5 2 6 8 3 9
-1
На поле, состоящем из M*N белых квадратных клеток единичного размера, некоторые клетки покрасили в чёрный цвет, в результате чего образовалось одна или несколько закрашенных фигур. Фигура называется связной, если из любой ее клетки можно
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
добраться до любой другой, ходя только по клеткам фигуры и перемещаясь каждый раз в одну из 4‑х соседних по стороне клеток. Несвязные фигуры считаются различными. Например, на данном рисунке приведены 3 фигуры. Периметр фигуры — это сумма длин ее внешних и внутренних (при наличии) сторон. Периметр фигур, изображенных на рисунке: 28, 6 и 4. Суммарный периметр фигур равен 38.
Требуется написать программу, которая находит суммарный периметр фигур, получившихся на клетчатом поле.
Первая строка входных данных содержит два целых числа M и N
(0 < M , N ≤ 100) — количество строк и столбцов, из которых состоит клетчатое поле. Во второй строке находится одно число K (0 ≤ K ≤ M*N) – количество клеток, закрашенных в черный цвет.
В последующих K строках содержатся координаты закрашенных клеток в формате:
<номер строки><пробел><номер столбца>.
Выведите одно число — суммарный периметр всех фигур.
5 5 13 1 1 1 2 1 3 2 2 2 4 3 2 3 3 3 4 4 2 4 4 5 3 5 4 5 5
28
Андрей недавно начал изучать информатику. Одним из первых алгоритмов, который он изучил, был алгоритм Евклида для нахождения наибольшего общего делителя (НОД) двух чисел. Напомним, что наибольшим общим делителем двух чисел a и b называется наибольшее натуральное число x, такое, что и число a, и число b делится на него без остатка.
Алгоритм Евклида заключается в следующем:
1.Пусть a, b — числа, НОД которых надо найти.
2.Если b = 0, то число a — искомый НОД.
3.Если b > a, то необходимо поменять местами числа a и b.
4. Присвоить числу a значение a – b.
5.Вернуться к шагу 2.
Андрей достаточно быстро освоил алгоритм Евклида и вычислил с его помощью много наибольших общих делителей. Поняв, что надо дальше совершенствоваться, ему пришла идея решить новую задачу. Пусть заданы числа a, b, c и d. Требуется узнать, наступит ли в процессе реализации алгоритма Евклида для заданной пары чисел (a, b) такой момент, когда перед исполнением шага 2 число a будет равно c, а число b будет равно d.
Требуется написать программу, которая решает эту задачу.
Первая строка входных данных содержит количество наборов входных данных K (1 ≤ K ≤ 100). Далее идут описания этих наборов. Каждое описание состоит из двух строк. Первая из них содержит два целых числа: a, b (1 ≤ a, b ≤ 1018). Вторая строка – два целых числа: c, d (1 ≤ c, d ≤ 1018).
Все числа в строках разделены пробелом.
Для каждого набора входных данных выведите слово «YES», если в процессе применения алгоритма Евклида к паре чисел (a, b) в какой-то момент получается пара (c, d). В противном случае выведите слово «NO».
2 20 10 10 10 10 7 2 4
YES NO