---> 3 задач <---
    2009(8 задач)
    2010(8 задач)
    2011(8 задач)
    2012(8 задач)
    2013(8 задач)
    2014(8 задач)
    2015(8 задач)
    2016(8 задач)
    2017(8 задач)
    Московская областная олимпиада(13 задач)
    Кировская открытая областная олимпиада(21 задач)
    Санкт-Петербург(3 задач)
Страница: 1 Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Развлекательный телеканал транслирует шоу «Колесо Фортуны». В процессе игры участники шоу крутят большое колесо, разделенное на сектора. В каждом секторе этого колеса записано число. После того как колесо останавливается, специальная стрелка указывает на один из секторов. Число в этом секторе определяет выигрыш игрока.

Юный участник шоу заметил, что колесо в процессе вращения замедляется из-за того, что стрелка задевает за выступы на колесе, находящиеся между секторами. Если колесо вращается с угловой скоростью \(v\) градусов в секунду, и стрелка, переходя из сектора \(X\) к следующему сектору, задевает за очередной выступ, то текущая угловая скорость движения колеса уменьшается на \(k\) градусов в секунду. При этом если \(v \le k\), то колесо не может преодолеть препятствие и останавливается. Стрелка в этом случае будет указывать на сектор \(X\).

Юный участник шоу собирается вращать колесо. Зная порядок секторов на колесе, он хочет заставить колесо вращаться с такой начальной скоростью, чтобы после остановки колеса стрелка указала на как можно большее число. Колесо можно вращать в любом направлении и придавать ему начальную угловую скорость от \(a\) до \(b\) градусов в секунду.

Требуется написать программу, которая по заданному расположению чисел в секторах, минимальной и максимальной начальной угловой скорости вращения колеса и величине замедления колеса при переходе через границу секторов вычисляет максимальный выигрыш.

Входные данные

Первая строка входного файла содержит целое число \(n\) — количество секторов колеса (\(3 \le n \le 100\)).

Вторая строка входного файла содержит \(n\) положительных целых чисел, каждое из которых не превышает \(1000\) — числа, записанные в секторах колеса. Числа приведены в порядке следования секторов по часовой стрелке. Изначально стрелка указывает на первое число.

Третья строка содержит три целых числа: \(a\), \(b\) и \(k\) (\(1 \le a \le b \le 10^9\), \(1 \le k \le 10^9\)).

Выходные данные

В выходном файле должно содержаться одно целое число — максимальный выигрыш.

Примечание

В первом примере возможны следующие варианты: можно придать начальную скорость колесу равную 3 или 4, что приведет к тому, что стрелка преодолеет одну границу между секторами, или придать начальную скорость равную 5, что позволит стрелке преодолеть 2 границы между секторами. В первом варианте, если закрутить колесо в одну сторону, то выигрыш получится равным 2, а если закрутить его в противоположную сторону, то — 5. Во втором варианте, если закрутить колесо в одну сторону, то выигрыш будет равным 3, а если в другую сторону, то — 4.

Во втором примере возможна только одна начальная скорость вращения колеса — 15 градусов в секунду. В этом случае при вращении колеса стрелка преодолеет семь границ между секторами. Тогда если его закрутить в одном направлении, то выигрыш составит 4, а если в противоположном направлении, то — 3.

Наконец, в третьем примере оптимальная начальная скорость вращения колеса равна 2 градусам в секунду. В этом случае стрелка вообще не сможет преодолеть границу между секторами, и выигрыш будет равен 5.

Правильные решения для тестов, в которых \(1 \le a \le b \le 1000\), будут оцениваться из 50 баллов.

Примеры
Входные данные
5
1 2 3 4 5
3 5 2
Выходные данные
5
Входные данные
5
1 2 3 4 5
15 15 2
Выходные данные
4
Входные данные
5
5 4 3 2 1
2 5 2
Выходные данные
5
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Победитель школьного этапа олимпиады по информатике нашел дома в старых бумагах результаты чемпионата страны по стрельбе из лука, в котором участвовал его папа. К сожалению, листок с результатами сильно пострадал от времени, и разобрать фамилии участников было невозможно. Остались только набранные каждым участником очки, причем расположились они в том порядке, в котором участники чемпионата выполняли стрельбу.

Расспросив папу, школьник выяснил, что количество очков, которое набрал папа, заканчивается на 5, один из победителей чемпионата стрелял раньше, а папин друг, который стрелял сразу после папы, набрал меньше очков. Теперь он заинтересовался, какое самое высокое место мог занять его папа на том чемпионате.

Будем считать, что участник соревнования занял \(k\)-е место, если ровно \((k - 1)\) участников чемпионата набрали строго больше очков, чем он. При этом победителями считались все участники чемпионата, занявшие первое место.

Требуется написать программу, которая по заданным результатам чемпионата определяет, какое самое высокое место на чемпионате мог занять папа победителя школьного этапа олимпиады по информатике.

Входные данные

Первая строка входного файла содержит целое число \(n\) — количество участников чемпионата страны по стрельбе (\(3 \le n \le 10^5\)).

Вторая строка входного файла содержит \(n\) положительных целых чисел, каждое из которых не превышает 1000, — очки участников чемпионата, приведенные в том порядке, в котором они выполняли стрельбу.

Выходные данные

В выходном файле должно содержаться одно целое число — самое высокое место, которое мог занять папа школьника. Если не существует ни одного участника чемпионата, который удовлетворяет, описанным выше условиям, выведите в выходной файл число 0.

Примечание

Правильные решения для тестов, в которых \(1 \le n \le 1000\), оцениваются из 50 баллов.

Примеры
Входные данные
7
10 20 15 10 30 5 1
Выходные данные
6
Входные данные
3
15 15 10
Выходные данные
1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Петя участвует в конкурсе, в котором разыгрывается \(n\) призов. Призы пронумерованы от 1 до \(n\).

По итогам конкурса участник может набрать от 2 до \(n\) баллов. Если участник наберет \(k\) баллов, то он получит один из призов с номером от 1 до \(k\). Перед тем, как участник выберет свой приз, ведущий конкурса удаляет один из призов из списка. Затем участник может выбрать любой приз из оставшихся \(k\) – 1.

Список призов стал известен Пете. Петя определил для каждого приза его ценность, для \(i\)-го приза она задается целым числом \(a_i\) .

Требуется написать программу, которая по заданным ценностям призов определяет для каждого \(k\) от 2 до \(n\), приз с какой максимальной ценностью гарантированно достанется Пете, если он наберет в конкурсе \(k\) баллов.

Входные данные

Первая строка входного файла содержит число \(n\) (\(2 \le n \le 100 000\)). Вторая строка этого файла содержит n целых чисел: \(a_1, a_2, …, a_n\) (\(1 \le a_i ≤ 10^9\) ).

Выходные данные

Выходной файл должен содержать одну строку, содержащую \(n\) – 1 целых чисел: для каждого \(k\) от 2 до \(n\) должна быть выведена ценность приза, который достанется Пете, если он наберет \(k\) баллов.

Описание подзадач и системы оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи успешно пройдены.

Подзадача 1 (24 балла)

\(n \le 100\)

Подзадача 2 (24 балла)

\(n \le 5000\)

Подзадача 3 (52 балла)

\(n \le 100000\)

Примеры
Входные данные
5
1 3 4 2 5
Выходные данные
1 3 3 4 

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест