Темы --> Информатика --> Алгоритмы --> Вычислительная геометрия
---> 7 задач <---
    2009(8 задач)
    2010(8 задач)
    2011(8 задач)
    2012(8 задач)
    2013(8 задач)
    2014(8 задач)
    2015(8 задач)
    2016(8 задач)
    2017(8 задач)
    Московская областная олимпиада(13 задач)
    Кировская открытая областная олимпиада(21 задач)
    Санкт-Петербург(3 задач)
Страница: 1 2 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Петя достаточно давно занимается в математическом кружке, поэтому он уже успел не только правила выполнения простейших операций, но и такое достаточно сложное понятие как симметрия. Для того, чтобы получше изучить симметрию Петя решил начать с наиболее простых геометрических фигур – треугольников. Он скоро понял, что осевой симметрией обладают так называемые равнобедренные треугольники. Поэтому теперь Петя ищет везде такие треугольники.

Напомним, что треугольник называется равнобедренным, если его площадь положительна, и у него есть хотя бы две равные стороны.

Недавно Петя, зайдя в класс, увидел, что на доске нарисовано n точек. Разумеется, он сразу задумался, сколько существует троек из этих точек, которые являются вершинами равнобедренных треугольников.

Требуется написать программу, решающую указанную задачу.

Входные данные

Входной файл содержит целое число n (3 ≤ n ≤ 1500). Каждая из последующих строк содержит по два целых числа – xi и yi – координаты i-ой точки. Координаты точек не превосходят 109 по абсолютной величине. Среди заданных точек нет совпадающих.

Выходные данные

В выходной файл выведите ответ на задачу.

Разбалловка для личной олимпиады

Тесты 1-2 — из условия. Оцениваются в 0 баллов.

Тесты 3-13 — n не превосходит 500. Группа тестов оценивается в 40 баллов.

Тесты 14-28 — дополнительных ограничений нет. Группа тестов оценивается в 60 балла (вместе с предыдущими группами — 100 баллов).

Баллы начисляются за прохождение всех тестов группы и всех тестов предыдущих групп. При выставлении баллов за отдельные тесты каждый тест (кроме тестов из условия) оценивается в 4 балла.

Примеры
Входные данные
3
0 0
2 2
-2 2
Выходные данные
1
Входные данные
4
0 0
1 1
1 0
0 1
Выходные данные
4
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Как известно, при распространении радиоволн возникает интерференция, поэтому если рядом расположены две радиопередающие станции, вещающие на одной и той же частоте, то качество радиопередач резко снижается.

Радиостанция «Байтик» планирует транслировать свои программы в стране Флатландия. Министерство связи Флатландии выдало радиостанции лицензию на вещание на двух различных частотах.

Владельцы радиостанции имеют возможность транслировать свои радиопрограммы с использованием N радиовышек, расположенных в различных точках страны. Для осуществления трансляции на каждой радиовышке требуется установить специальный передатчик – трансмиттер. Каждый передатчик можно настроить на одну из двух частот, выделенных радиостанции. Кроме частоты вещания, передатчик характеризуется также своей мощностью. Чем мощнее передатчик, тем на большее расстояние он распространяет радиоволны. Для простоты, предположим, что передатчик мощности R распространяет радиоволны на расстояние, равное R километрам.

Все передатчики, установленные на вышках, должны, согласно инструкции министерства, иметь одну и ту же мощность. Чтобы программы радиостанции могли приниматься на как можно большей территории, мощность передатчиков должна быть как можно большей. С другой стороны, необходимо, чтобы прием передач был качественным на всей территории Флатландии. Прием передач считается качественным, если не существует такого участка ненулевой площади, на который радиоволны радиостанции «Байтик» приходят на одной частоте одновременно с двух вышек.

Требуется написать программу, которая определяет, какую максимальную мощность можно было установить на всех передатчиках, позволяющую выбрать на каждом передатчике такую одну из двух частот передачи, чтобы прием был качественным на всей территории Флатландии.

Входные данные

Первая строка содержит число N — количество вышек (3 ≤ N ≤ 1200). Последующие N строк содержат по два целых числа — координаты вышек. Координаты заданы в километрах и не превышают 104 по модулю. Все точки, в которых расположены вышки, различны. Все числа в строках разделены пробелом.

Выходные данные

В первой строке выводится вещественное число — искомая мощность передатчиков. Во второй строке выводятся N чисел, где i-е число должно быть равно 1, если соответствующий передатчик должен вещать на первой частоте, и 2, если на второй. Ответ должен быть выведен с точностью, не меньшей 10–8.

Примеры
Входные данные
4
0 0
0 1
1 0
1 1
Выходные данные
0.707106781186548
1 2 2 1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

На плоскости задано N (1 ≤ N ≤ 30) супермногоугольников (без пересечений и самопересечений). Каждый супермногоугольник задаётся координатами своих Ki (3 ≤ Ki ≤ 30, 1 ≤ iN) вершин в порядке обхода против часовой стрелки. Все координаты — целые числа из диапазона -32000..32000. Требуется соединить супермногоугольники М отрезками так, чтобы:

  1. Oтрезок соединяет только пару супермногоугольников.

  2. Суммарная длина отрезков была минимальна.

  3. Между любыми двумя супермногоугольниками должен существовать путь (последовательность некоторых отрезков и частей границ супермногоугольников).

Формат входных данных

В первой строке число N. В следующих N строках. Число Ki и Ki пар чисел – координаты вершин.

Формат выходных данных

В первой строке число М и сумма длин найденных отрезков с точностью 10-3. В следующих М строках числа L1 X1 Y1 L2 X2 Y2 – номера супермногоугольников и координаты концов отрезков с точностью 10-3.

Примеры

Входные данные

Выходные данные

2

3 1 0 2 0 1 1

4 6 5 7 5 7 6 6 6

1 6.364

1 1.500 0.500 2 6.000 5.000

3

3 0 0 1 0 0 1

4 5 5 6 5 6 6 5 6

3 0 5 1 6 0 6

2 8.000

3 1.000 6.000 2 5.000 6.000

1 0.000 1.000 3 0.000 5.000

ограничение по времени на тест
4.0 second;
ограничение по памяти на тест
64 megabytes

К 2110 году город Флэтбург, являясь одним из крупнейших городов мира, не имеет обходной автомагистрали, что является существенным препятствием для его развития как крупнейшего транспортного центра мирового значения. В связи с этим ещё в 2065 году при разработке Генерального плана развития Флэтбурга была определена необходимость строительства кольцевой автомобильной дороги.

В Генеральном плане также были обозначены требования к этой дороге. Она должна соответствовать статусу кольцевой — иметь форму окружности. Кроме этого, четыре крупные достопримечательности Флэтбурга должны быть в одинаковой транспортной доступности от дороги. Это предполагается обеспечить тем, что они будут находиться на равном расстоянии от неё. Расстоянием от точки расположения достопримечательности до дороги называется наименьшее из расстояний от этой точки до некоторой точки, принадлежащей окружности автодороги.

Дирекция по строительству города Флэтбурга, ответственная за постройку кольцевой автодороги, решила привлечь передовых программистов для выбора оптимального плана постройки дороги.

Требуется написать программу, которая вычислит число возможных планов постройки кольцевой автомобильной дороги с соблюдением указанных требований и найдёт такой план, для которого длина дороги будет минимальной. Гарантируется, что хотя бы один план постройки существует.

Входные данные

Входной файл содержит четыре строки. Каждая из них содержит по два целых числа: \(x_i\) и \(y_i\) — координаты места расположения достопримечательности. Первая строка описывает первую достопримечательность, вторая — вторую, третья — третью, четвёртая — четвёртую. Никакие две достопримечательности не находятся в одной точке.

Все числа во входном файле не превосходят 100 по абсолютной величине.

Выходные данные

В первой строке выходного файла требуется вывести число возможных планов постройки кольцевой автомобильной дороги. Если таких планов бесконечно много, необходимо вывести в первой строке выходного файла слово Infinity.

На второй строке требуется вывести координаты центра дороги минимальной длины и её радиус. Если существует несколько разных способов построения дороги минимальной длины, необходимо вывести координаты центра и радиус любой из них. Координаты центра и радиус должны быть выведены с точностью не хуже \(10^{-5}\) и не должны превышать \(10^9\). Гарантируется, что существует хотя бы один план с такими параметрами.

Примеры
Входные данные
0 0
0 1
1 0
2 2
Выходные данные
7
1.5 0.5 1.14412281
Входные данные
0 0
0 1
1 0
1 1
Выходные данные
Infinity
0.5 0.5 0.0
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes
Пересечение полуплоскостей за O(NlogN)

Министерство дорожного транспорта решило построить себе новый офис. Поскольку министр регулярно выезжает с инспекцией наиболее важных трасс, было решено, что офис министерства не должен располагаться слишком далеко от них.

Наиболее важные трассы представляют собой прямые на плоскости. Министерство хочет выбрать такое расположение для своего офиса, чтобы максимум из расстояний от офиса до трасс был как можно меньше.

Требуется написать программу, которая по заданному расположению наиболее важных трасс определяет оптимальное расположение дома для офиса министерства дорожного транспорта.

Входные данные

Первая строка входного файла содержит одно целое число \(n\) — количество наиболее важных трасс (\(1 \le n \le 10^4\)).

Последующие \(n\) строк описывают трассы. Каждая трасса описывается четырьмя целыми числами \(x_1\), \(y_1\), \(x_2\) и \(y_2\) и представляет собой прямую, проходящую через точки \((x_1, y_1)\) и \((x_2, y_2)\). Координаты заданных точек не превышают по модулю \(10^4\). Точки \((x_1, y_1)\) и \((x_2, y_2)\) ни для какой прямой не совпадают.

Выходные данные

Выходной файл должен содержать два разделенных пробелом вещественных числа: координаты точки, в которой следует построить офис министерства дорожного транспорта. Координаты по модулю не должны превышать \(10^9\), гарантируется, что хотя бы один такой ответ существует. Если оптимальных ответов несколько, необходимо выведите любой из них.

Ответ должен иметь абсолютную или относительную погрешность не более \(10^{-6}\), что означает следующее. Пусть максимальное расстояние от выведенной точки до некоторой трассы равно \(x\), а в правильном ответе оно равно \(y\). Ответ будет засчитан, если значение выражения \(|x - y| / max(1, |y|)\) не превышает \(10^{-6}\).

Примечание

Правильные решения для тестов, в которых \(n \le 100\) и все прямые параллельны, оцениваются из 20 баллов.

Правильные решения для тестов, в которых \(n \le 100\) и все прямые параллельны осям координат, оцениваются из 20 баллов.

Правильные решения для тестов, в которых \(n \le 100\), оцениваются из 70 баллов (в эти баллы включаются также по 20 баллов за случаи, описанные в предыдущих двух абзацах).

Примеры
Входные данные
4
0 0 0 1
0 0 1 0
1 1 2 1
1 1 1 2
Выходные данные
0.5000000004656613 0.4999999995343387
Входные данные
7
376 -9811 376 -4207
6930 -3493 6930 -8337
1963 -251 1963 -5008
-1055 9990 -684 9990
3775 -348 3775 1336
7706 -2550 7706 -8412
-9589 8339 -4875 8339
Выходные данные
4040.9996151750674 12003.999615175067

Страница: 1 2 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест