Задача №1739. Игра с фишками

Вы являетесь одним из разработчиков новой компьютерной игры. Игра происходит на прямоугольной доске, состоящей из \(W\) × \(H\) клеток. Каждая клетка может либо содержать, либо не содержать фишку (см. рисунок).

Важной частью игры является проверка того, соединены ли две фишки путем, удовлетворяющим следующим свойствам:

1) Путь должен состоять из отрезков вертикальных и горизонтальных прямых.

2) Путь не должен пересекать других фишек.

При этом часть пути может оказаться вне доски. Например:

Фишки с координатами (1,3) и (4,4) могут быть соединены. Фишки с координатами (2,3) и (5,3) тоже могут быть соединены. А вот фишки с координатами (2,3) и (3,4) соединить нельзя – любой соединяющий их путь пересекает другие фишки.

Вам необходимо написать программу, проверяющую, можно ли соединить две фишки путем, обладающим вышеуказанными свойствами, и, в случае положительного ответа, определяющую минимальную длину такого пути (считается, что путь имеет изломы, начало и конец только в центрах клеток (или «мнимых клеток», расположенных вне доски), а отрезок, соединяющий центры двух соседних клеток, имеет длину 1).

Входные данные

Первая строка входного файла содержит два натуральных числа: \(W\) – ширина доски, \(H\) – высота доски (1≤\(W\),\(H\)≤75). Следующие \(H\) строк содержат описание доски: каждая строка состоит ровно из W символов: символ «X» (заглавная английская буква «экс») обозначает фишку, символ «.» (точка) обозначает пустое место. Все остальные строки содержат описания запросов: каждый запрос состоит из четырёх натуральных чисел, разделённых пробелами – \(X_1\), \(Y_1\), \(X_2\), \(Y_2\), причём 1≤\(X_1\),\(X_2\)\(W\), 1≤\(Y_1\),\(Y_2\)\(H\). Здесь (\(X_1\), \(Y_1\)) и (\(X_2\), \(Y_2\)) – координаты фишек, которые требуется соединить (левая верхняя клетка имеет координаты (1,1)). Гарантируется, что эти координаты не будут совпадать (кроме последнего запроса; см. далее). Последняя строка содержит запрос, состоящий из четырёх чисел 0; этот запрос обрабатывать не надо. Количество запросов не превосходит 20.

Выходные данные

Для каждого запроса необходимо вывести одно целое число на отдельной строке – длину кратчайшего пути, или 0, если такого пути не существует.

Примеры
Входные данные
5 4
XXXXX
X...X
XXX.X
.XXX.
2 3 5 3
1 3 4 4
2 3 3 4
0 0 0 0
Выходные данные
5
6
0
Сдать: для сдачи задач необходимо войти в систему