Задача №1111. Обход в глубину
Недавно на кружке по программированию Петя узнал об обходе в глубину. Обход в глубину используется во многих алгоритмах на графах. Петя сразу же реализовал обход в глубину на своих любимых языках программирования Паскале и Си.
Паскаль | Си |
var a: array [1..maxn, 1..maxn] of boolean; visited: array [1..maxn] of boolean;
procedure dfs(v: integer); var i: integer; begin writeln(v); visited[v] := true; for i := 1 to n do begin if a[v][i] and not visited[i] then begin dfs(i); writeln(v); end; end; end;
procedure graph_dfs; var i: integer; begin for i := 1 to n do if not visited[i] then dfs(i); end; | int a[maxn + 1][maxn + 1]; int visited[maxn + 1];
void dfs(int v) { printf("%d\n", v); visited[v] = 1; for (int i = 1; i <= n; i++) { if ((a[v][i] != 0) && (visited[i] == 0)) { dfs(i); printf("%d\n", v); } } }
void graph_dfs() { for (int i = 1; i <= n; i++) { if (visited[i] == 0) { dfs(i); } } } |
Петина программа хранит граф с использованием матрицы смежности в массиве a (вершины графа пронумерованы от 1 до n). В массиве visited помечается, в каких вершинах обход в глубину уже побывал.
Петя запустил процедуру graph_dfs для некоторого неориентированного графа G с n вершинами и сохранил ее вывод. А вот сам граф потерялся. Теперь Пете интересно, какое максимальное количество ребер могло быть в графе G. Помогите ему выяснить это!
Первая строка входного файла содержит два целых числа: n и l количество вершин в графе и количество чисел в выведенной последовательности (1 ≤ n ≤ 300, 1 ≤ l ≤ 2n − 1). Следующие l строк по одному числу вывод Петиной программы. Гарантируется, что существует хотя бы один граф, запуск программы Пети на котором приводит к приведенному во входном файле выводу.
На первой строке выходного файла выведите одно число m максимальное возможное количество ребер в графе.
Следующие m строк должны содержать по два целых числа номера вершин, соединенных ребрами. В графе не должно быть петель и кратных ребер.
6 10 1 2 3 2 4 2 1 5 6 5
6 1 2 1 3 1 4 2 3 2 4 5 6