Задача №113100. Три сына

Во владениях короля Флатландии находится прямая дорога длиной \(n\) километров, по одну сторону от которой расположен огромный лесной массив. Король Флатландии проникся идеями защиты природы и решил превратить свой лесной массив в заповедник. Но сыновья стали сопротивляться: ведь им хотелось получить эти земли в наследство.

У короля три сына: младший, средний и старший. Король решил, что в заповедник не войдут участки лесного массива, которые он оставит сыновьям в наследство. При составлении завещания король хочет, чтобы для участков выполнялись следующие условия:

  • каждый участок должен иметь форму квадрата, длина стороны которого выражается целым положительным числом. Одна из сторон каждого квадрата должна лежать на дороге. Пусть участки имеют размеры \(a \times a, b \times b\) и \(c \times c\);
  • стороны квадратов должны полностью покрывать дорогу: величина a + b + c должна быть равна \(n\);
  • участок младшего сына должен быть строго меньше участка среднего сына, а участок среднего сына должен, в свою очередь, быть строго меньше участка старшего сына, то есть должно выполняться неравенство \(a < b < c\);
  • суммарная площадь участков \(a^2 + b^2+ c^2\) должна быть минимальна.
Требуется написать программу, которая по заданной длине дороги определяет размеры участков, которые следует выделить сыновьям короля.

Входные данные

Входной файл содержит одно целое число \(n\) (\(6 \le n \le 10^9\) ).

Выходные данные

Выходной файл должен содержать три целых положительных числа, разделенных пробелами: \(a\), \(b\) и \(c\) – длины сторон участков, которые следует выделить младшему, среднему и старшему сыну, соответственно. Если оптимальных решений несколько, разрешается вывести любое.

Пояснение к примеру

Описание подзадач и системы оценивания

В этой задаче четыре подзадачи. Баллы за подзадачу начисляются только в случае, если все тесты для данной подзадачи пройдены.

Подзадача 1 (25 баллов)

\(n \le 50\)

Подзадача 2 (25 баллов)

\(n \le 2000\)

Подзадача 3 (25 баллов)

\(n \le 40000\)

Подзадача 4 (25 баллов)

\(n \le 10^9\)

Примеры
Входные данные
6
Выходные данные
1 2 3
Сдать: для сдачи задач необходимо войти в систему