Задача №114134. Суровый корректор

По мнению Александра Павловича, текст необычайно красив, если некоторые особые слова (например, «коммунизм», «Ленин», «счастье») встречаются не слишком часто, но и не слишком редко, к тому же достаточно равномерно.

Александр Павлович работает корректором. К нему поступают тексты, он имеет право их некоторым образом менять, после чего возвращает уже исправленную версию.

В связи со своими воззрениями о красоте Александру Павловичу постоянно приходится проверять, сколько особых слов сейчас в той или иной части текста.

Он настолько устал от рутинного подсчёта: «а сколько тут особых слов?», «а сколько тут?», что просит вас помочь ему автоматизировать этот процесс.

Входные данные

Первая строка входного файла содержит текст длины \(L\) (\(1 \leq L \leq 10^5\)), в котором ищутся особые слова.

Следующая строка содержит \(N\) (\(1 \le n \le 10^5\)) — количество особых слов.

Следующие \(n\) строк содержат особые слова. Все особые слова различны. Суммарная длина строк не превосходит \(10^5\).

В следующей строке дано \(Q\) (\(1 \le q \le 10^5\)) — количество интересных Александру Павловичу отрезков.

Следующие \(q\) строк содержат сами отрезки.

Выходные данные

Выведите \(q\) чисел — количества вхождений особых слов в соответствующий отрезок текста.

Система оценки

Тесты к данной задаче состоят из семи групп тестов. Баллы за каждую группу тестов ставятся только при прохождении всех тестов группы и всех тестов зависимых групп и теста из условия.

Обозначим за \(LEN_{max}\) максимальную длину особого слова.

  1. \(n \leq 1000, q = 1\), группа оценивается в \(11\) баллов.
  2. \(LEN_{max} \leq 1000, q = 1\), группа оценивается в \(13\) баллов.
  3. \(q = 1\), группа оценивается в \(12\) баллов. Группа зависит от 1, 2.
  4. \(n \leq 1000, q \leq 10000\), группа оценивается в \(21\) балл. Группа зависит от 1.
  5. \(LEN_{max} \leq 1000, q \leq 10000\), группа оценивается в \(19\) баллов. Группа зависит от 2.
  6. \(q \leq 10000\), группа оценивается в \(23\) балла. Группа зависит от 1, 2, 3, 4, 5.
  7. полные ограничения, группа оценивается в \(1\) балл. Группа зависит от 1, 2, 3, 4, 5, 6.
Примеры
Входные данные
abacababa
2
a
aba
3
5 9
2 2
2 6
Выходные данные
5 0 2
Сдать: для сдачи задач необходимо войти в систему