Задача №1207. Трамвай

A,B,C,D - первый тур

E,F,G,H - второй тур

С окраины в центр города каждое утро по одному маршруту едут в трамвае N человек. За долгое время поездок они достаточно хорошо узнали друг друга. Чтобы никому не было обидно, они захотели решить, кто из них и между какими остановками маршрута должен сидеть, а кто должен стоять. Все остановки пронумерованы от 1 до P.

Один из пассажиров оказался знатоком теории математического моделирования. Он предложил рассмотреть значение суммарного удовлетворения пассажиров. Для каждого i-го пассажира он оценил две величины — ai и bi. Если в течение одного переезда между остановками пассажир сидит, то к суммарному удовлетворению прибавляется ai, если же он стоит, то прибавляется bi.

Всего в трамвае M сидячих мест. Вставать и садиться пассажиры могут мгновенно на любой остановке. Кроме того, некоторые пассажиры предпочитают ехать стоя, даже если в трамвае есть свободные места (для них ai < bi).

Требуется написать программу, которая вычисляет значение максимально достижимого суммарного удовлетворения, если для каждого i-го пассажира известны величины ai и bi, а также номера остановок, на которых он садится и выходит из трамвая.

Входные данные

Первая строка входного файла содержит разделенные пробелом три целых числа N, M и P — число пассажиров, число сидячих мест и число остановок на маршруте соответственно (1  N, M,  P  100 000; 2 ≤ P).

Каждая из следующих N строк содержит информацию об очередном пассажире в виде четырех целых чисел ai, bi, ci, di:, где первые два числа определяют вклад в параметр счастья, третье – номер остановки, на которой пассажир садится в трамвай, и последнее – номер остановки, на которой он выходит из трамвая (−106 ≤ ai, bi ≤ 106; 1 ≤ ci < di P).

Выходные данные

В выходной файл необходимо вывести одно целое число — максимальное суммарное удовлетворение, которого могут добиться пассажиры.

Комментарий к примеру тестов

Максимальное суммарное довольство достигается следующим образом:
На первой остановке входят и садятся второй и третий пассажиры;
На второй остановке входят первый и четвертый пассажиры, второй уступает место первому;
На третьей остановке встают и выходят первый и третий пассажиры, второй и четвертый садятся на их места;
На четвертой остановке выходят второй и четвертый пассажиры.

Разбалловка для личной олимпиады

Тест 1 — из условия. Оценивается в 0 баллов.

Тесты 2-31 — числа M, N, P не превосходят 100. Группа тестов оценивается в 60 баллов.

Тесты 32-41 — число P не превосходит 100. Группа тестов оценивается в 20 баллов (вместе с предыдущей группой — 80 баллов).

Тесты 42-51 — дополнительных ограничений нет. Группа тестов оценивается в 20 баллов (вместе с предыдущими группами — 100 баллов).

Баллы начисляются за прохождение всех тестов группы и всех тестов предыдущих групп.

Примеры
Входные данные
4 2 4
10 -10 2 3
-1 -3 1 4
6 -6 1 3
7 4 2 4
Выходные данные
28
Сдать: для сдачи задач необходимо войти в систему