Задача №1272. Олимпиада-2010

Команда Москвы на Всероссийской олимпиаде по информатике 2017 года оказалась настолько велика, что помещается только в 2 вагона. Некоторые школьники испытывают друг к другу такую личную неприязнь, что не могут есть, находясь в одном вагоне. Поскольку не есть в поезде нельзя (это противоречит СанПиНам), то участников олимпиады надо рассадить так, чтобы школьники, испытывающие взаимную неприязнь, ехали в разных вагонах. Если это невозможно, никто никуда не поедет.

Входные данные

Первая строка входного файла содержит количество школьников N (1 ≤ N ≤ 10000) и количество взаимных неприязней M (1 ≤ M ≤ 100000). Следующие M строк содержат пары чисел, задающих номера участников, испытывающих взаимную неприязнь. Участники нумеруются с единицы.

Выходные данные

В случае, если рассадить участников невозможно — выведите единственное число 0. Если же рассадка возможна, выведите в первой строке номера школьников, едущих в первом вагоне, во второй — едущих во втором вагоне. Первый школьник всегда должен ехать в первом вагоне. Школьник с меньшим номером должен находится в первом вагоне, если это возможно. Номера школьников в каждом из вагонов должны быть упорядочены по возрастанию.

Примеры
Входные данные
4 3
1 2
2 3
2 4
Выходные данные
1 3 4 
2 
Сдать: для сдачи задач необходимо войти в систему