Задача №1637. Домино
Набор домино состоит из прямоугольных костяшек, каждая из которых разделена на две половинки линией, параллельной более короткой стороне. На каждой из половинок нарисованы точки, количество которых соответствует числу от 0 до \(M\) включительно. На костяшках полного набора домино обозначены все возможные различные пары чисел, например, если M равно 3, то полный набор содержит 10 костяшек: (0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3).
Из костяшек можно выкладывать цепочки, соединяя пары костяшек короткими сторонами, если количества точек на соседних с местом соединения половинках костяшек равны.
Некоторые костяшки были удалены из полного набора. Требуется определить, какое минимальное количество цепочек нужно выложить из оставшихся в наборе костяшек, чтобы каждая из них принадлежала ровно одной цепочке.
Напишите программу, которая по информации о наборе домино должна ответить, какое минимальное количество цепочек нужно выложить.
В первой строке входного файла содержится одно целое число \(M\) (0≤\(M\)≤100), которое соответствует максимально возможному количеству точек на половинке костяшки. Во второй строке записано одно целое число \(N\), равное количеству костяшек, удаленных из полного набора. Каждая \(і\)-я из последующих \(N\) строк содержит по два числа \(A_i\) и \(B_і\). Это количества точек на половинках \(i\)-й удалённой костяшки.
Единственная строка выходного файла должна содержать одно целое число \(L\) – минимальное количество цепочек.
7 2 7 5 3 4
2