Задача №1983. На санях

В начале XIX века еще не было самолетов, поездов и автомобилей, поэтому все междугородние зимние поездки совершались на санях. Как известно, с дорогами в России тогда было даже больше проблем, чем сейчас, а именно на N существовавших тогда городов имелась ровно N-1 дорога, каждая из которых соединяла ровно два города. К счастью, из каждого города можно было добраться в любой другой (возможно, через некоторые промежуточные города). В каждом городе имелась почтовая станция (или, как ее называют, «ям»), на которой можно было пересесть в другие сани. При этом ямщики могли долго запрягать (для каждого из городов известно время, которое ямщики в этом городе тратят на подготовку саней к поездке) и быстро ехать (также для каждого города известна скорость, с которой ездят ямщики из него). Можно считать, что количество ямщиков в каждом городе не ограничено.

Если бы олимпиада проводилась 200 лет назад, то путь участников занимал бы гораздо большее время, чем сейчас. Допустим, из каждого города в Москву выезжает участник олимпиады и хочет добраться до Москвы за наименьшее время (не обязательно по кратчайшему пути: он может заезжать в любые города,  через один и тот же город можно проезжать несколько раз). Сначала он едет на ямщике своего города. Приехав в любой город, он может либо сразу ехать дальше, либо пересесть. В первом случае он едет с той же скоростью, с какой ехал раньше. Решив сменить ямщика, он сначала ждет, пока ямщик подготовит сани, и только потом едет с ним (естественно, с той скоростью, с которой ездит этот ямщик). В пути можно делать сколько угодно пересадок.

Жюри стало интересно, какое время необходимо, чтобы все участники олимпиады доехали из своего города в Москву 200 лет назад. Все участники выезжают из своих городов одновременно.

Входные данные

В первой строке входного файла дано натуральное число N, не превышающее 2000 — количество городов, соединенных дорогами. Город с номером 1 является столицей.

Следующие N строк содержат по два целых числа: Ti и Vi — время подготовки саней в городе i, выраженное в часах, и скорость, с которой ездят ямщики из города i, в километрах в час (0 ≤ Ti ≤ 100, 1 ≤ Vi ≤ 100).

Следующие N–1 строк содержат описания дорог того времени. Каждое описание состоит из трех чисел Aj, Bj и Sj, где Aj и Bj — номера соединенных городов, а Sj — расстояние между ними в километрах (1  AjN, 1 ≤ BjN, AjBj, 1 ≤ Sj ≤ 10000). Все дороги двусторонние, то есть если из A можно проехать в B, то из B можно проехать в A. Гарантируется, что из всех городов можно добраться в столицу.

Выходные данные

Сначала выведите одно вещественное число — время в часах, в которое в Москву приедет последний участник.

Далее выведите путь участника, который приедет самым последним (если таких участников несколько, выведите путь любого из них). Выведите город, из которого этот участник выехал первоначально, и перечислите в порядке посещения те города, в которых он делал пересадки. Последовательность должна заканчиваться столицей.

При проверке ответ будет засчитан, если из трех величин «время путешествия по выведенному пути», «выведенное время» и «правильный ответ» каждые две отличаются менее чем на 0.0001.

Комментарий к примеру тестов

1. Участник из города 1 уже находится на своем месте и тратит на дорогу 0 часов. Участник из города 2 ждет 10 часов ямщика в своем городе, а затем проезжает 300 км от города 2 до города 1 за 10 часов, т.е. тратит на дорогу 20 часов. Участник из города номер 3 ждет ямщика 5 часов, а затем доезжает до города 1 за 10 часов, т.е. тратит на дорогу 15 часов. Участник из города 4 может доехать до города 1 с ямщиком из города 4 за 1 + 40 = 41 час или доехать до города номер 2 за 1 + 10 = 11 часов, прождать там 10 и доехать до столицы за 10 часов. Таким образом, он может добраться до города 1 минимум за 31 час. Это и есть самое большое время и ответ к задаче.

2. Участнику из города 2 выгоднее добраться сначала до третьего города, где ездят быстрее, а потом поехать в столицу, не делая пересадки в своём городе.

Примеры
Входные данные
4
1 1
10 30
5 40
1 10
1 2 300
1 3 400
2 4 100
Выходные данные
31.0000000000
4 2 1
Входные данные
3
1 1
0 10
0 55
1 2 100
2 3 10
Выходные данные
3.0000000000
2 3 1
Сдать: для сдачи задач необходимо войти в систему