Задача №2975. Различные числа

Олимпиада завершена. Режим дорешивания.

На днях Алиса делала уборку в своей комнате и нашла дневник, который вела в начальной школе. Там она с удивлением обнаружила запись о том насколько ее поразило то, что \(2 + 2 = 2 \cdot 2\). Невероятно, умножение и сложение дают один и тот же результат!

Эта запись натолкнула Алису на следующую задачу: пусть целые заданы числа \(a\) и \(b\). Сколько различных значений в наборе чисел

\(a + b\), \(\;a - b\), \(\;a \cdot b\), \(\;a / b\), \(\;a^b\),
\(b + a\), \(\;b - a\), \(\;b \cdot a\), \(\;b / a\), \(\;b^a\).

Деление происходит без округления, результат деления может не быть целым числом. Если какое-либо выражение из этого набора некорректно, то Алиса его не рассматривает. Некорректными считаются деление на ноль и возведение нуля в неположительную степень.

Входные данные

Первая строка входного файла содержит целые числа \(a\) и \(b\), разделенные пробелом (\(|a|, |b| \le 10^9\)).

Выходные данные

Выведите в выходной файл количество различных чисел в приведенном наборе.

Сдать: для сдачи задач необходимо войти в систему