Задача №3338. Наименьшее общее кратное (BCD)
Найдите наименьшее общее кратное всех целых чисел от \(1\) до \(N\). Наименьшим общим кратным натуральных чисел \(a_1\),\(a_2\),…,\(a_k\) называется число \(A\), такое что \(А\) делится на \(a_i\) для всех \(i\) от \(1\) до \(k\), причем \(A\) – наименьшее натуральное число, обладающее этим свойством.
Входные данные
Одно целое число (\(1 \leq N \leq 1000\)).
Выходные данные
Выведите одно целое число – наименьшее общее кратное всех чисел от \(1\) до \(N\).
Примеры
Входные данные
3
Выходные данные
6
Сдать: для сдачи задач необходимо войти в систему