Задача №36. Псевдопростые числа
Олимпиада завершена. Режим дорешивания.
Пусть a1 = 2, a2 = 3, an = a1∙a2∙...∙an-1 – 1 при n ≥ 3. Назовем числа ai псевдопростыми. Для заданного натурального числа X нужно ответить на вопрос: можно ли X однозначно представить в виде произведения псевдопростых чисел (представления, отличающиеся только порядком множителей, считаются одинаковыми), и, если можно — выдать разложение.<
Входные данные
Вводится одно натуральное число X, 1 < X ≤ 109.
Выходные данные
Выведите псевдопростые числа, произведение которых равно X, в произвольном порядке. Если разложения не существует или оно не единственно, выдать 0.
Оценка задачи
1 балл будет набирать программа, верно работающая для X ≤ 100.
Примеры
Входные данные
6
Выходные данные
2 3
Входные данные
5
Выходные данные
5
Входные данные
7
Выходные данные
0
Сдать: для сдачи задач необходимо войти в систему