Задача №3780. Компьютерная игра (платформы)
Вы можете вспомнить хоть одного своего знакомого до двадцатилетнего возраста, который в детстве не играл в компьютерные игры? Если да, то может быть вы и сами не знакомы с этим развлечением? Впрочем, трудностей при решении этой задачи это создать не должно.
Во многих старых играх с двумерной графикой можно столкнуться с подобной ситуацией. Какой-нибудь герой прыгает по платформам (или островкам), которые висят в воздухе. Он должен перебраться от одного края экрана до другого. При этом при прыжке с одной платформы на соседнюю, у героя уходит |y2–y1| единиц энергии, где y1 и y2 — высоты, на которых расположены эти платформы. Кроме того, у героя есть суперприём, который позволяет перескочить через платформу, но на это затрачивается 3·|y3–y1| единиц энергии. Конечно же, энергию следует расходовать максимально экономно.
Предположим, что вам известны координаты всех платформ в порядке от левого края до правого. Сможете ли вы найти, какое минимальное количество энергии потребуется герою, чтобы добраться с первой платформы до последней?
В первой строке записано количество платформ n (1 ≤ n ≤ 30000). Вторая строка содержит n натуральных чисел, не превосходящих 30000 — высоты, на которых располагаются платформы.
Выведите единственное число — минимальное количество энергии, которую должен потратить игрок на преодоление платформ (конечно же в предположении, что cheat-коды использовать нельзя).
2 100 1
99
3 1 100 80
119