Задача №3897. Шоколадки
У мальчика Васи есть \(N\) шоколадок (возможно, разного веса). Вася пригласил к себе в гости \(K\) своих друзей и хочет подарить им шоколадки. Чтобы никому из друзей не было обидно, Вася решил раздать шоколадки так, чтобы каждому другу досталось одно и то же количество шоколада (т.е. суммарный вес шоколадок, доставшихся каждому другу, должен быть одинаковым). Вася может раздать все свои шоколадки, может раздать лишь часть, но, поскольку он — очень гостеприимный мальчик, он не хочет оставлять друзей совсем без шоколада (т.е. сумма весов шоколадок, доставшихся каждому другу, должна быть строго положительной). Все шоколадки красиво упакованы, т.е. делить их на части нельзя.
Определите, сколько у Васи есть способов раздать шоколад своим друзьям. Два способа считайте различными тогда и только тогда, когда существует шоколадка, которая в одном способе досталась некоторому другу, а в другом — другому другу или вовсе не была отдана друзьям.
В первой строке входного файла находятся два натуральных числа \(N\) и \(K\) (\(1 \leq N \leq 15\), \(1 \leq K \leq 15\)) — количество шоколадок у Васи и количество друзей, которых Вася пригласил в гости. Во второй строке содержатся \(N\) натуральных чисел — веса шоколадок. Ни один из весов не превосходит \(1000\).
Выведите в выходной файл одно число — количество способов раздать шоколадки друзьям.
Во втором примере возможные распределения шоколадок следующие:
- Первому другу дать шоколадку номер 1, второму — номер 2;
- Первому другу дать шоколадку номер 2, второму — номер 1;
- Первому другу дать шоколадку номер 3, второму — шоколадки номер 1 и 2;
- Первому другу дать шоколадки номер 1 и 2, второму — номер 3.
5 4 1 2 1 1 1
24
3 2 1 1 2
4