Задача №591. Триангуляция
Вася нарисовал выпуклый \(N\)-угольник и провел в нем несколько диагоналей таким образом, что никакие две диагонали не пересекаются внутри \(N\)-угольника. Теперь он утверждает, что весь \(N\)-угольник оказался разбит на треугольники. Напишите программу, которая проверяет истинность Васиного утверждения.
Сначала вводятся числа \(N\) - количество вершин \(N\)-угольника (3 <= \(N\) <= 1000) и \(M\) - количество диагоналей, проведенных Васей. Далее на вход программы поступают \(M\) пар чисел, задающих диагонали (каждая диагональ задается парой номеров вершин, которые она соединяет). Гарантируется, что каждая пара чисел задает диагональ (то есть две вершины различны и не являются соседними), а также что никакие две пары не задают одну и ту же диагональ. Никакие две диагонали не пересекаются внутри \(N\)-угольника. Вершины \(N\)-угольника нумеруются числами от 1 до \(N\).
Если Васино утверждение верно, то программа должна выводить единственное число 0. В противном случае необходимо вывести сначала число \(K\) - количество вершин в какой-нибудь не треугольной части. Далее должно быть выведено \(K\) чисел - номера вершин исходного \(N\)-угольника, которые являются вершинами этой \(K\)-угольной части в порядке обхода этой части.
3 0
0
4 1 1 3
0
6 2 1 3 5 3
4 1 3 5 6