Задача №604. Дополнение - 1

Дан неориентированный граф без кратных ребер и петель. В нем уже содержится некоторое (возможно, нулевое) количество ребер. Можно за определенную плату добавлять в него новые ребра (плата своя для каждого ребра). Требуется за наименьшую плату сделать граф связным.

Входные данные

В первой строке входных данных содержится одно целое число \(N\) (1 ≤ \(N\) ≤ 50) – количество вершин в исходном графе. Далее в \(N\) строках записано по \(N\) положительных целых чисел в каждой ( \(j\) -е число в \(i\) -й строке соответствует стоимости добавления ребра, соединяющего вершины \(i\) и \(j\) ), числа не превышают 100. В следующих \(N\) строках записаны по \(N\) чисел, каждое из которых является единицей или нулем (1, если вершины соединены, и 0, если не соединены). Обе матрицы симметричны.

Выходные данные

Вывести единственное число – минимально возможную стоимость дополнения данного графа до связного.

Примеры
Входные данные
3
0 1 20
1 0 10
20 10 0
0 1 0
1 0 0
0 0 0
Выходные данные
10
Сдать: для сдачи задач необходимо войти в систему