Алгоритмы(1657 задач)
Структуры данных(279 задач)
Интерактивные задачи(17 задач)
Другое(54 задач)
В новой игре "Closed Loops 7" игрокам предлагается клетчатая таблица \(N\) на \(M\) клеток. Ход состоит в том, что очередной игрок рисует цикл - замкнутую линию без самопересечений, идущую только по сторонам клеток. Каждый цикл можно нарисовать только один раз за всю игру (при этом, конечно, не запрещается рисовать циклы, пересекающиеся с уже нарисованными). Игроки ходят по очереди. Выигрывает тот, кто рисует последний возможный цикл. К примеру, если \(N=2\), \(M=1\), то циклов всего три и игрок, делающий третий ход, выигрывает.
Вася позвал \(K-1\) друзей поиграть с ним. Чтобы произвести впечатление, он непременно хочет выиграть. Для этого ему нужно узнать, каким по счету игроком он должен быть, чтобы гарантированно одержать победу. Вася наслышан о ваших успехах в программировании, и за помощью он обратился именно к вам.
Даны три целых числа: \(N, M\) - размеры таблицы (\(1 \le N \le 100, 1 \le M \le 8\)) и \(K\) - количество игроков (\(1 < K \le 10^9\)).
Тесты состоят из трёх групп. В этой задаче нет off-line групп.
2 1 2
1
1 8 8064
36
На прямой задано \(N\) попарно различных отрезков \([a_i, b_i]\) (\(i = 1, 2, \dots, N\), \(a_i < b_i\)). Будем говорить, что отрезок номер \(i\) непосредственно содержится в отрезке номер \(j\) (\(i \ne j\)), если:
Ваша задача - для каждого из данных отрезков найти тот, в котором он непосредственно содержится, либо сообщить, что таких нет. Если данный отрезок непосредственно содержится сразу в нескольких - подходит любой из них.
Сначала вводится целое число \(N\) (\(1 \le N \le 100\,000\)). Далее идут \(N\) пар целых чисел \(a_i\), \(b_i\) (\(-10^9 \le a_i < b_i \le 10^9\)).
Выведите \(N\) чисел. Число номер \(i\) должно быть равно номеру отрезка, в котором непосредственно содержится отрезок номер \(i\), либо 0 - если такого не существует.
Если существует несколько решений, выведите любое.
Тесты состоят из четырёх групп.
4 2 3 0 4 1 6 0 5
3 4 0 0
При написании программы, проверяющей ответ участника для задачи 3204 "Отрезки на прямой возвращаются" (ссылка на задачу) (прочитайте её условие!), жюри столкнулось с трудностями, превосходящими сложность самой задачи. С мыслью "почему бы и нет" написание такой программы было решено также включить в комплект задач.
Проверяющей программе доступно три блока информации:
Ваша задача - написать программу, которая по этим данным определит, правильно ли программа абстрактного участника посчитала ответ.
Вход состоит из трёх частей. Первая часть - число \(N\) (\(1 \le N \le 100\,000\)) и следом \(N\) пар \(a_i\), \(b_i\) (\(-10^9 \le a_i \lt b_i \le 10^9\)). Далее идут \(N\) чисел, каждое из которых от 0 до \(N\), \(i\)-е равно номеру отрезка, являющегося одним из непосредственно содержащих \(i\)-й, либо нулю - по мнению абстрактного участника. Далее идут ещё \(N\) чисел в том же формате - ответ жюри на эту задачу.
Входные данные всегда корректны. Это означает, например, что ответ участника не нужно проверять на соответствие формату и что ответ жюри точно правильный.
Выведите \(N\) строк. В \(i\)-й строке должен быть вердикт для \(i\)-го отрезка. Выведите OK, если ответ абстрактного участника правильный, и WA - иначе.
Тесты состоят из четырёх групп.
4 2 3 0 4 1 6 0 5 2 2 1 0 3 4 0 0
OK WA WA OK
Петя часто ездит на олимпиады, и потому у него накопилось много футболок. Все футболки он делит на три типа: белые, чёрные и цветные. Каждое утро он выбирает футболку и носит её весь день. Петя любит ходить только в свежих футболках, и поэтому, если он уже надевал одну, то следующий раз он наденет её только после стирки. Его мама не стирает вместе футболки разных типов (иначе они полиняют). Кроме того, мама соблюдает инструкции по оптимальной загрузке стиральной машинки, и для стирки ей требуется ровно \(K\) футболок. При этом, конечно, стирать уже чистые футболки она не будет. Подразумевается, что мама стирает футболки сразу же, как ее об этом попросит Петя, и на следующий день он уже может их надевать.
Один из типов футболок Петя любит больше остальных, отчасти из-за того, что количество футболок этого типа позволяет носить только их. Но однажды Пете сказали, что он одевается не “по моде”, на что Петя обиделся и поспорил, что он сможет \(N\) дней одеваться модно. По моде, принятой в их школе, нельзя ходить два дня подряд в однотипной футболке и нельзя прийти в футболке того же типа ровно через неделю, после того как ты ее надел (например, два понедельника подряд). Школьная мода распространяется и на те дни, когда в школу ходить не надо.
Петя хочет знать, может ли он выиграть спор и, если может, то в каком порядке ему нужно надевать футболки в течении этих \(N\) дней. Он просит вас ему помочь.
Во входном файле содержатся пять целых чисел \(N, W, B. C\) и \(K\), разделенных пробелами — число дней, которые Петя должен носить футболки “по моде”, количество белых, черных и цветных футболок, имеющихся у него соответственно, и количество грязных однотипных футболок, которое согласится стирать мама. Гарантируется, что хотя бы одно из чисел \(W, B, C\) не меньше \(K\). \(1 \le N \le 1000, 1 \le K \le 1000, 0 \le W \le 1000, 0 \le B \le 1000, 0 \le C \le 1000\).
В первой строке выходного файла выведите единственное слово YES или N0 — ответ на вопрос задачи. Если ответ YES, то во второй строке выведите \(N\) символов, где \(i\)-ый символ означает цвет футболки, которую Петя будет носить в \(i\)-ый день. Символ “W” означает белый цвет, “В” — черный, “С” — цветной.
Тесты 1-3, из условия, оцениваются в 0 баллов.
1. В тестах этой группы среди чисел \(W, B\) и \(C\) хотя бы одно равно нулю. Эта группа оценивается в 50 баллов, при этом баллы начисляются только при прохождении всех тестов группы (при этом прохождения всех тестов из условия не требуется).
2. Баллы за тесты этой группы начисляются только при прохождении всех тестов 1 группы. Некоторые тесты этой группы объединяются в подгруппы, баллы за каждую подгруппу ставятся только при прохождении всех тестов подгруппы
2 5 0 4 1
YES WC
4 3 4 5 3
YES CWCW
10 3 2 1 3
NO
Юные физики Евгений и Родион очень любят музыку, кроме того Родион умеет исполнять любое произведение при помощи бутылок с водой. У них есть \(N\) бутылок бесконечной вместимости. В \(i\)-ой бутылке уже содержится \(a_i\) мл воды. Также у них есть бочонок с \(L\) мл воды, из которого можно переливать любой имеющийся объём воды в любую бутылку. Выливать воду из бутылок нельзя. После того как Евгений заканчивает все переливания, он больше не притрагивается к бутылкам, а Родион начинает играть мелодию.
Мелодия состоит из \(M\) нот \(b_1, b_2, \dots, b_M\), которые обязательно надо исполнять в заданном порядке. Ноту \(b_i\) Родион сможет сыграть, если найдется бутылка с \(b_i\) мл воды. Если очередную ноту он исполнить не может, то сильно огорчается и перестает играть. Евгений стремится наполнить бутылки таким образом, чтобы Родион играл как можно дольше. Помогите ребятам узнать, какое максимальное количество начальных нот данной мелодии сможет сыграть Родион при оптимальных действиях Евгения.
В первой строке входного файла содержатся три целых числа \(N\), \(M\), \(L\) - количество бутылок, длина мелодии и объем бочонка соответственно. Во второй строке через пробел расположены \(N\) чисел \(a_i\) (\(i = 1, 2, \dots N\)) - количество мл в \(i\)-ой бутылке. В третьей строке - \(M\) чисел \(b_i\) (\(i = 1, 2, \dots M\)) - последовательность нот в мелодии (каждая музыкальная нота обозначается своим числом, одинаковые ноты - одинаковыми числами). Все числа целые и неотрицательные.
Выведите единственное число - максимальное количество начальных нот мелодии, которые можно сыграть, оптимально заполнив бутылки.
Тесты состоят из четырёх групп.
6 8 179 4 9 23 15 43 7 3 10 14 7 3 8 7 3
0
5 8 5 5 3 8 14 1 10 7 3 7 12 3 3 6
4
2 2 4 6 13 8 10
1