Темы --> Информатика --> Алгоритмы --> Алгоритмы на графах
    Кратчайшие пути в графе(116 задач)
    Обход в глубину(100 задач)
    Способы задания графа(54 задач)
    Минимальный каркас(12 задач)
    Потоки(21 задач)
    Паросочетания(17 задач)
    Эйлеров цикл(9 задач)
    Деревья(16 задач)
---> 1 задач <---
Страница: 1 Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Задан взвешенный граф, содержащий два типа вершин (деревни и города), а также начальная вершина (столица). Необходимо для каждого из городов определить кратчайший путь от столицы.

В государстве алхимиков есть N населённых пунктов, пронумерованных числами от 1 до N, и M дорог. Населённые пункты бывают двух типов: деревни и города. Кроме того, в государстве есть одна столица (она может располагаться как в городе, так и в деревне). Каждая дорога соединяет два населённых пункта, и для проезда по ней требуется Ti минут. В столице было решено провести 1-ю государственную командную олимпиаду по алхимии. Для этого во все города из столицы были отправлены гонцы (по одному гонцу на город) с информацией про олимпиаду.

Напишите программу, которая посчитает, в каком порядке и через какое время каждый из гонцов доберётся до своего города. Считается, что гонец во время пути не спит и нигде не задерживается.

Входные данные

Во входном файле сначала записаны 3 числа N, M, K — количество населенных пунктов, количество дорог и количество городов (2N1000, 1M10000, 1KN). Далее записан номер столицы C (1CN). Следующие K чисел задают номера городов. Далее следуют M троек чисел Si, Ei, Ti, описывающих дороги: Si и Ei — номера населенных пунктов, которые соединяет данная дорога, а Ti — время для проезда по ней (1Ti100).

Гарантируется, что до каждого города из столицы можно добраться по дорогам (возможно, через другие населенные пункты).

Выходные данные

Выведите в выходной файл K пар чисел: для каждого города должен быть выведен его номер и минимальное время, когда гонец может в нем оказаться (время измеряется в минутах с того момента, как гонцы выехали из столицы). Пары в выходном файле должны быть упорядочены по времени прибытия гонца.

Примеры
Входные данные
5 4 5 1
1 2 3 4 5
1 2 1
2 3 10
3 4 100
4 5 100

Выходные данные
1 0
2 1
3 11
4 111
5 211
Входные данные
5 5 3 1
2 4 5
2 1 1
2 3 10
3 4 100
4 5 100
1 5 1

Выходные данные
5 1
2 1
4 101

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест