Дан ориентированный взвешенный граф. Найдите кратчайшее расстояние от одной заданной вершины до другой.
В первой строке содержатся три числа: N, S и F (1≤ N≤ 100, 1≤ S, F≤ N), где N – количество вершин графа, S – начальная вершина, а F – конечная. В следующих N строках вводится по N чисел, не превосходящих 100, – матрица смежности графа, где -1 означает отсутствие ребра между вершинами, а любое неотрицательное число – присутствие ребра данного веса. На главной диагонали матрицы записаны нули.
Требуется вывести искомое расстояние или -1, если пути между указанными вершинами не существует.
3 2 1 0 1 1 4 0 1 2 1 0
3
Дан ориентированный взвешенный граф. Найдите кратчайший путь от одной заданной вершины до другой.
В первой строке содержатся три числа: N, S и F (1≤N≤100, 1≤S, F≤N), где N – количество вершин графа, S – начальная вершина, а F – конечная. В следующих N строках вводится по N чисел, не превосходящих 100, – матрица смежности графа, где -1 означает отсутствие ребра между вершинами, а любое неотрицательное число – присутствие ребра данного веса. На главной диагонали матрицы записаны нули.
Требуется вывести последовательно все вершины одного (любого) из кратчайших путей, или одно число -1, если пути между указанными вершинами не существует. В ответе примера указано количество вершин, а не сам путь. Ваша программа должна выдавать именно путь.
3 2 1 0 1 1 4 0 1 2 1 0
3
В стране N городов, некоторые из которых соединены между собой дорогами. Для того, чтобы проехать по одной дороге, требуется один бак бензина. В каждом городе бак бензина имеет разную стоимость. Вам требуется добраться из первого города в N-ый, потратив как можно меньшее денег. Покупать бензин впрок нельзя.
В первой строке вводится число N (1≤N≤100), в следующей строке идет N чисел, i-ое из которых задает стоимость бензина в i-ом городе (всё это целые числа из диапазона от 0 до 100). Затем идет число M – количество дорог в стране, далее идет описание самих дорог. Каждая дорога задается двумя числами – номерами городов, которые она соединяет. Все дороги двухсторонние (то есть по ним можно ездить как в одну, так и в другую сторону), между двумя городами всегда существует не более одной дороги, не существует дорог, ведущих из города в себя.
Требуется вывести одно число – суммарную стоимость маршрута или -1, если добраться невозможно.
5 3 6 1 7 6 8 1 2 5 4 5 1 3 4 5 2 2 4 2 3 3 1
3
5 3 7 2 9 4 4 1 2 1 3 2 3 4 5
-1
Петя работает над очень большим проектом. Проект содержит N файлов. В процессе работы Пете часто приходится просматривать и редактировать файлы. Для ускорения работы Петя использует файловый менеджер Fur Manager, который отображает список имен файлов проекта в некотором порядке.
В текущей версии Fur Manager’a для перемещения по списку имен файлов есть следующие возможности:
можно нажать клавишу вниз, при этом курсор перемещается на следующий файл в списке, для последнего файла следующим считается первый;
можно нажать клавишу вверх, при этом курсор перемещается на предыдущий файл в списке, для первого файла предыдущим считается последний;
можно нажать клавишу Alt и, удерживая ее, набрать последовательность латинских букв. После этого клавишу Alt следует отпустить, и в этот момент курсор переместится на ближайший файл, имя которого начинается c заданной последовательности символов. Ближайший файл — это файл, на который можно переместиться за наименьшее количество нажатий клавиши вниз. Если заданная последовательность является началом имени текущего файла, или файла, имя которого начинается с этой последовательности, не существует, то курсор останется на месте.
Первая и вторая из описанных возможностей файлового менеджера требуют по одному нажатию клавиши, а третья — одного нажатия (нажатие клавиши Alt) плюс количество нажатий, равное длине набранной последовательности латинских букв.
Файлы пронумерованы от 1 до N в порядке их следования. После загрузки Fur Manager’а курсор находится на первом файле.
Петя знает, что ему сначала придется редактировать файл с номером a1, затем с номером a2 и так далее, а последним — файл с номером ak. В последовательности a1, a2, ..., ak один и тот же номер может встречаться несколько раз. При каждом перемещении от одного файла к другому Петя хочет нажимать как можно меньше клавиш.
Требуется написать программу, которая выдает искомую последовательность нажатий клавиш.
В первой строке входных данных содержится целое число N (1 ≤ N ≤ 1000) — количество файлов в проекте.
В следующих N строках записаны имена файлов, по одному в каждой строке. Файлы перечислены в том порядке, в котором они отображаются файловым менеджером. Имена состоят только из строчных латинских букв. Длина каждого имени не превосходит 2000 символов. Все имена файлов различны.
Далее в следующей строке записано целое число k (1 ≤ k ≤ 10).
Последняя строка входных данных содержит k целых чисел a1, a2, ..., ak (1 ≤ ai ≤ N) — номера редактируемых файлов. Редактирование файлов выполняется в том порядке, в котором они встречаются в последовательности a1, a2, ..., ak.
Выведите описание искомой последовательности нажатий клавиш в виде k блоков информации:
Каждый блок информации выглядит следующим образом.
В первой строке блока записывается число L — наименьшее количество нажатий клавиш, необходимое для перемещения от очередного файла последовательности к следующему.
Следующие L строк блока описывают нажимаемые клавиши. Каждая из строк содержит описание одной клавиши:
Если существует несколько оптимальных способов перемещения, то требуется вывести любой из них.
6 a b c d e f 4 4 3 1 6
2 Alt d 1 up 2 Alt a 1 up
Дан ориентированный взвешенный граф. Для него вам необходимо найти кратчайшее расстояние от вершины S до вершины F.
В первой строке входных данных содержатся три числа: N, S и F (1 <= N <= 100; 1 <= S, F <= N), где N – количество вершин графа. В следующих N строках записаны по N чисел – матрица смежности графа, где число в i-ой строке и j-ом столбце соответствует ребру из i в j: -1 означает отсутствие ребра между вершинами, а любое неотрицательное число – наличие ребра данного веса. На главной диагонали матрицы всегда записаны нули.
Выведите искомое кратчайшее расстояние или -1, если пути между указанными вершинами не существует.