--->
1 задач
<---
Для того чтобы проверить, как её ученики умеют считать, Мария Ивановна каждый год задаёт им на дом одну и ту же задачу – для заданного натурального A найти минимальное натуральное N такое, что N в степени N (N, умноженное на себя N раз) делится на A. От года к году и от ученика к ученику меняется только число A.
Вы решили помочь будущим поколениям. Для этого вам необходимо написать программу, решающую эту задачу.
Во входном файле содержится единственное число A (1 ≤ A ≤ \(10^9\) – на всякий случай; вдруг Мария Ивановна задаст большое число, чтобы «завалить» кого-нибудь…).
В выходной файл вывести единственное число N.
1
1
8
4