Сортировка записей(9 задач)
Использование сортировки(13 задач)
Быстрая сортировка(55 задач)
Сортировка слиянием(9 задач)
Сортировка подсчетом(27 задач)
Сканирующая прямая(39 задач)
Сортировка событий(4 задач)
Одна Очень Престижная Олимпиада, как и все престижные олимпиады в последнее время, состоит из двух туров - регионального и заключительного. Правила отбора во второй тур (заключительный этап) просты:
Известно, что никакие два участника не набрали одинаковое количество баллов. По информации о результатах первого тура помогите жюри установить минимально возможный проходной балл, при котором все правила отбора будут выполнены.
В первой строке входного файла содержатся три целых числа \(N\), \(M\) и \(R\) - число участников первого тура, максимально возможное число участников второго тура и число регионов, из которых могли быть участники (\(1 \le M < N\)). Далее в \(N\) строках содержатся результаты каждого из участников. Каждая строка состоит из четырех целых чисел. Сначала идет \(id\) - уникальный идентификатор участника (\(1 \le id \le N\)), далее номер региона \(region\), в котором данный участник учится (\(1 \le region \le R\)), затем \(score\) - число баллов, набранных участником, четвертое число равно 1, если участник является призером олимпиады прошлого года, и 0 - в противном случае.
Гарантируется, что все идентификаторы участников различны, никакие два участника не набрали одинаковое число баллов, и выполнить все правила отбора возможно.
Выведите одно число - минимальный проходной балл, который можно установить.
Тесты состоят из четырёх групп. Во всех тестах \(0 \le score \le 10^9\).
9 6 5 6 1 799 0 2 4 995 0 1 4 989 1 7 2 538 0 5 4 984 0 8 2 1000 0 3 2 998 0 4 2 823 1 9 1 543 0
985
Во время лыжных соревнований \(N\) спортсменов стартуют с интервалом в 1 минуту. Скорость каждого лыжника на дистанции постоянна: \(i\)-й лыжник преодолевает 1 км за \(w_i\) минут. Длина трассы равна \(L\) км. Считается, что \(i\)-й лыжник обогнал \(j\)-го (совершил обгон), если он стартовал позже \(j\)-го, а пришёл к финишу раньше него. Подсчитайте суммарное число совершённых во время гонки обгонов.
Первая строка входного файла содержит два целых числа \(N\) и \(L\). Во второй строке через пробел расположены \(N\) целых чисел \(w_i\).
Выведите единственное число - суммарное количество обгонов.
Во всех тестах \(1 \le L \le 10^9\), \(1 \le w_i \le 10^9\) при \(i = 1, 2, \dots, N\). Тесты состоят из трёх групп.
2 1 20 19
0
5 3 3 6 2 4 1
7