---> 55 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: 1 2 3 4 5 6 7 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Петя работает над очень большим проектом. Проект содержит N файлов. В процессе работы Пете часто приходится просматривать и редактировать файлы. Для ускорения работы Петя использует файловый менеджер Fur Manager, который отображает список имен файлов проекта в некотором порядке.

В текущей версии Fur Managera для перемещения по списку имен файлов есть следующие возможности:

  1. можно нажать клавишу вниз, при этом курсор перемещается на следующий файл в списке, для последнего файла следующим считается первый;

  2. можно нажать клавишу вверх, при этом курсор перемещается на предыдущий файл в списке, для первого файла предыдущим считается последний;

  3. можно нажать клавишу Alt и, удерживая ее, набрать последовательность латинских букв. После этого клавишу Alt следует отпустить, и в этот момент курсор переместится на ближайший файл, имя которого начинается c заданной последовательности символов. Ближайший файл — это файл, на который можно переместиться за наименьшее количество нажатий клавиши вниз. Если заданная последовательность является началом имени текущего файла, или файла, имя которого начинается с этой последовательности, не существует, то курсор останется на месте.

Первая и вторая из описанных возможностей файлового менеджера требуют по одному нажатию клавиши, а третья — одного нажатия (нажатие клавиши Alt) плюс количество нажатий, равное длине набранной последовательности латинских букв.

Файлы пронумерованы от 1 до N в порядке их следования. После загрузки Fur Manager’а курсор находится на первом файле.

Петя знает, что ему сначала придется редактировать файл с номером a1, затем с номером a2 и так далее, а последним — файл с номером ak. В последовательности a1, a2, ..., ak один и тот же номер может встречаться несколько раз. При каждом перемещении от одного файла к другому Петя хочет нажимать как можно меньше клавиш.

Требуется написать программу, которая выдает искомую последовательность нажатий клавиш.

Входные данные

В первой строке входных данных содержится целое число N (1 ≤ N ≤ 1000) — количество файлов в проекте.

В следующих N строках записаны имена файлов, по одному в каждой строке. Файлы перечислены в том порядке, в котором они отображаются файловым менеджером. Имена состоят только из строчных латинских букв. Длина каждого имени не превосходит 2000 символов. Все имена файлов различны.

Далее в следующей строке записано целое число k (1 ≤ k ≤ 10).

Последняя строка входных данных содержит k целых чисел a1, a2, ..., ak (1 ≤ aiN) — номера редактируемых файлов. Редактирование файлов выполняется в том порядке, в котором они встречаются в последовательности a1, a2, ..., ak.

Выходные данные

Выведите описание искомой последовательности нажатий клавиш в виде k блоков информации:

  • первый блок информации описывает перемещение от файла с номером 1 к файлу с номером a1;
  • второй блок информации описывает перемещение от файла с номером a1 к файлу с номером a2;
  • k-ый блок информации описывает перемещение от файла с номером ak–1 к файлу с номером ak.

Каждый блок информации выглядит следующим образом.

В первой строке блока записывается число L — наименьшее количество нажатий клавиш, необходимое для перемещения от очередного файла последовательности к следующему.

Следующие L строк блока описывают нажимаемые клавиши. Каждая из строк содержит описание одной клавиши:

  • если нажимается клавиша вниз, то в строке записывается слово down;
  • если нажимается клавиша вверх, то в строке записывается слово up;
  • если нажимается клавиша Alt, то в строке записывается слово Alt;
  • при нажатии клавиши с латинской буквой выводится соответствующая ей латинская буква.

Если существует несколько оптимальных способов перемещения, то требуется вывести любой из них.

Система оценки
  • Подзадача 1. Решения, верно работающие при \(n \leqslant 30\), оцениваются в 28 баллов. Баллы ставятся при прохождении всех тестов.
  • Подзадача 2. Решения, верно работающие при больших ограничениях, оцениваются по 4 балла за тест..
Примеры
Входные данные
6
a
b
c
d
e
f
4
4 3 1 6
Выходные данные
2
Alt
d
1
up
2
Alt
a
1
up
ограничение по времени на тест
3.0 second;
ограничение по памяти на тест
64 megabytes

Группа людей называется современниками, если был такой момент, когда они могли собраться все вместе и обсуждать какой-нибудь важный вопрос. Для этого в тот момент, когда они собрались, каждому из них должно было уже исполниться 18 лет, но еще не исполниться 80 лет.

Вам дан список великих людей с датами их жизни. Выведите всевозможные максимальные множества современников. Множество современников будем называть максимальным, если нет другого множества современников, которое включает в себя всех людей из первого множества.

Будем считать, что в день своего 18-летия человек уже может принимать участие в такого рода собраниях, а в день 80-летия, равно как и в день своей смерти, — нет.

Входные данные

Сначала на вход программы поступает число N — количество людей (1N10000). Далее в N строках  вводится по шесть чисел — первые три задают дату (день, месяц, год) рождения, следующие три — дату смерти (она всегда не ранее даты рождения). День (в зависимости от месяца, а в феврале — еще и года) от 1 до 28, 29, 30 или 31, месяц — от 1 до 12, год — от 1 до 2005.

Выходные данные

Программа должна вывести все максимальные множества современников. Каждое множество должно быть записано на отдельной строке и содержать номера людей (люди во входных данных нумеруются в порядке их задания, начиная с 1). Номера людей должны разделяться пробелами.

Никакое множество не должно быть указано дважды.

Если нет ни одного непустого максимального множества, выведите  одно число 0.

Гарантируется, что входные данные будут таковы, что размер  выходных данных  для правильного ответа не превысит 2 Мб.

Оценка задачи

1 балл получат программы, правильно решающие задачу для случая N100.

Примеры
Входные данные
3
2 5 1988 13 11 2005
1 1 1 1 1 30
1 1 1910 1 1 1990
Выходные данные
2 
3 
Входные данные
3
2 5 1968 13 11 2005
1 1 1 1 1 30
1 1 1910 1 1 1990
Выходные данные
2 
1 3 
Входные данные
3
2 5 1988 13 11 2005
1 1 1 1 1 10
2 1 1910 1 1 1928
Выходные данные
0
ограничение по времени на тест
5.0 second;
ограничение по памяти на тест
256 megabytes

Задана информация об N партиях - количестве голосующих за них и размер взятки, который необходимо дать партии, чтобы она делала что нужно, если победит. Изменение результата голосования одного человека стоит 1 уе. Требуется за наименьшее количество денег подкупить партию и людей так, чтобы она победила.

В одной демократической стране приближаются парламентские выборы. Выборы проходят по следующей схеме: каждый житель страны, достигший восемнадцатилетнего возраста, отдает свой голос за одну из политических партий. После этого партия, которая набрала максимальное количество голосов, считается победившей на выборах и формирует правительство. Если несколько партий набрали одинаковое максимальное количество голосов, то они должны сформировать коалиционное правительство, что обычно приводит к длительным переговорам.

Один бизнесмен решил выгодно вложить свои средства и собрался поддержать на выборах некоторые партии. В результате поддержки он планирует добиться победы одной из этих партий, которая затем сформирует правительство, которое будет действовать в его интересах. При этом возможность формирования коалиционного правительства его не устраивает, поэтому он планирует добиться строгой победы одной из партий.

Чтобы повлиять на исход выборов, бизнесмен собирается выделить деньги на агитационную работу среди жителей страны. Исследование рынка показало, что для того, чтобы один житель сменил свои политические воззрения, требуется потратить одну условную единицу. Кроме того, чтобы i-я партия в случае победы сформировала правительство, которое будет действовать в интересах бизнесмена, необходимо дать лидеру этой партии взятку в размере pi условных единиц. При этом некоторые партии оказались идеологически устойчивыми и не согласны на сотрудничество с бизнесменом ни за какие деньги.

По результатам последних опросов известно, сколько граждан планируют проголосовать за каждую партию перед началом агитационной компании. Помогите бизнесмену выбрать, какую партию следует подкупить, и какое количество граждан придется убедить сменить свои политические воззрения, чтобы выбранная партия победила, учитывая, что бизнесмен хочет потратить на всю операцию минимальное количество денег.

Входные данные

В первой строке вводится целое число n – количество партий ( 1<= n <=105). Следующие n строк описывают партии. Каждая из этих строк содержит по два целых числа: vi – количество жителей, которые собираются проголосовать за эту партию перед началом агитационной компании, и pi – взятка, которую необходимо дать лидеру партии для того, чтобы сформированное ей в случае победы правительство действовало в интересах бизнесмена ( 1<=vi<=106, 1<=pi<=106 или pi = - 1). Если партия является идеологически устойчивой, то pi равно -1. Гарантируется, что хотя бы одно pi не равно -1.

Выходные данные

В первой строке  выведите минимальную сумму, которую придется потратить бизнесмену. Во второй строке выведите номер партии, лидеру которой следует дать взятку. В третьей строке выведите n целых чисел – количество голосов, которые будут отданы за каждую из партий после осуществления операции. Если оптимальных решений несколько, выведите любое.

Примеры
Входные данные
3
7 -1
2 8
1 2
Выходные данные
6
3
3 2 5 
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Даны эльфы, обладающие темпераментом Bi и олени со строптивостью Ai. С каждым оленем должны ехать два эльфа, причем Bk < Ai < Bj. Необходим выбрать наибольшее количество оленей.

Скоро новый год и Санта-Клаус уже начал готовить свою волшебную оленью упряжку, на которой он развозит подарки детям. Известно, что упряжку везут несколько волшебных оленей, на каждом из которых едут два эльфа.

Но волшебные олени – строптивые животные, поэтому не любые два эльфа могут ехать на любом олене. А именно, каждый олень характеризуется некоторой строптивостью ai, а каждый эльф – темпераментом bi. Два эльфа j и k могут ехать на i-м олене в том и только в том случае, если либо \( b_j \lt a_i \lt b_k \), либо \( b_k \lt a_i \lt b_j\).

Чтобы его появление было максимально зрелищным, Санта-Клаус хочет, чтобы в его упряжке было как можно больше оленей. Про каждого оленя Санта знает его строптивость, а про каждого эльфа – его темперамент.

Помогите Санте выяснить, какое максимальное количество оленей он сможет включить в упряжку, каких оленей ему следует выбрать, и какие эльфы должны на них ехать.

Входные данные

В первой строке вводятся два целых числа m и n – количество оленей и эльфов, соответственно \( (1 \le m, n \le 100 000) \).

Вторая строка содержит m целых чисел ai – строптивость оленей \( (0 \le a_i \le 10^9) \). В третьей строке записаны \(n\) целых чисел \(b_i\) – темперамент эльфов \( (0 \le b_i \le 10^9) \).

Выходные данные

В первой строке  выведите одно число k – максимальное количество оленей, которое Санта-Клаус может включить в свою упряжку. В следующих k строках выведите по три целых числа: di, ei, 1, ei, 2 – для каждого оленя в упряжке выведите его номер и номера эльфов, которые на нем поедут. Если решений несколько, выведите любое.

И эльфы, и олени пронумерованы, начиная с единицы, в том порядке, в котором они заданы во входных данных.

Примеры
Входные данные
4 6
2 3 4 5
1 3 2 2 5 2
Выходные данные
2
1 1 2
2 4 5
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
В двумерном массиве записаны числа. Числа формируются следующим образом: ставится шахматный ферзь и на клетку записывается число. Ферзем делается любой ход и на клетку, на которую он попал, ставится число, большее предыдущего. Необходимо проверить корректность и вывести последовательность ходов.

Ваня очень любит шахматы. Причем он не только любит просто играть в шахматы, но часто придумывает разные головоломки и просто забавные задачки с использованием шахматных фигур. Также вместо стандартной шахматной доски 8×8 Ваня часто использует в своих задачах доски другого размера.

Недавно он придумал новую головоломку и рассказал ее своим друзьям. Суть головоломки заключается в следующем. На одно из полей доски размером m×n записывается некоторое положительное целое число и затем на него ставится ферзь.

После этого Ваня делает k ходов ферзем, каждый раз перемещая его по шахматным правилам на одно из полей, на котором он еще не был. При этом каждый раз, перед тем как поставить ферзя на некоторое поле, он записывает на это поле целое число, причем это число всегда больше всех чисел, уже записанных на доске.

Задача друзей Вани – по числам, записанным на доске, восстановить маршрут ферзя или выяснить, что Ваня где-то ошибся. Поскольку Ваня часто выбирает достаточно большие m, n и k, друзья устали решать эту головоломку вручную и решили написать для ее решения программу. Помогите им

Напомним, что по шахматным правилам ферзь может пойти на любое поле доски, находящееся на одной вертикали, горизонтали или диагонали с тем полем, на котором он находится.

Входные данные

В первой строке вводятся числа m, n и k ( 1\( le\)m, n\( le\)300, 0\( le\)k < mn). Следующие m строк содержат по n целых чисел и описывают поля доски (пустому полю соответствует число 0, а полю, на котором записано число – это число). Все числа, записанные на доске, положительные, целые и не превышают 109.

Выходные данные

Если Ваня ошибся при построении головоломки, выведите  сообщение «Wrong Board».

В противном случае выведите m строк по n чисел – для каждого поля выведите номер хода, перед которым ферзь побывал на этом поле, а для последнего поля, на котором он оказался – число k + 1. Для полей, на которые ферзь не попадал, выведите число 0.

Примеры
Входные данные
4 4 7
10 20 0 100
30 0 0 40
0 0 0 0
45 42 0 70
Выходные данные
1 2 0 8 
3 0 0 4 
0 0 0 0 
6 5 0 7 
Входные данные
2 4 4
10 20 30 40
0 50 0 0
Выходные данные
Wrong Board
Входные данные
2 2 2
1 2
4 3
Выходные данные
Wrong Board

Страница: 1 2 3 4 5 6 7 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест