Бинарный поиск(101 задач)
Порядковые статистики(3 задач)
Поиск подстроки в строке(1 задач)
Тернарный поиск(8 задач)
"Два указателя"(18 задач)
Одна Очень Престижная Олимпиада, как и все престижные олимпиады в последнее время, состоит из двух туров - регионального и заключительного. Правила отбора во второй тур (заключительный этап) просты:
Известно, что никакие два участника не набрали одинаковое количество баллов. По информации о результатах первого тура помогите жюри установить минимально возможный проходной балл, при котором все правила отбора будут выполнены.
В первой строке входного файла содержатся три целых числа \(N\), \(M\) и \(R\) - число участников первого тура, максимально возможное число участников второго тура и число регионов, из которых могли быть участники (\(1 \le M < N\)). Далее в \(N\) строках содержатся результаты каждого из участников. Каждая строка состоит из четырех целых чисел. Сначала идет \(id\) - уникальный идентификатор участника (\(1 \le id \le N\)), далее номер региона \(region\), в котором данный участник учится (\(1 \le region \le R\)), затем \(score\) - число баллов, набранных участником, четвертое число равно 1, если участник является призером олимпиады прошлого года, и 0 - в противном случае.
Гарантируется, что все идентификаторы участников различны, никакие два участника не набрали одинаковое число баллов, и выполнить все правила отбора возможно.
Выведите одно число - минимальный проходной балл, который можно установить.
Тесты состоят из четырёх групп. Во всех тестах \(0 \le score \le 10^9\).
9 6 5 6 1 799 0 2 4 995 0 1 4 989 1 7 2 538 0 5 4 984 0 8 2 1000 0 3 2 998 0 4 2 823 1 9 1 543 0
985
В одной Очень Известной Летней Школе наиболее популярным видом спорта является волейбол. Для каждого из \(N\) школьников известно его умение играть в волейбол. Перед началом занятий школьников необходимо распределить между двумя тренерами.
Тренеры сочли справедливым следующий алгоритм разделения на две группы. Сначала они выбирают два целых числа \(p\), \(q\) (\(0 < p \le q \le N\)). Затем первый берет себе \(p\) лучших школьников, после чего оба тренера, начиная со второго, берут по очереди по \(q\) лучших школьников из оставшихся, пока их количество не меньше \(q\). В конце очередной тренер просто берет всех оставшихся.
Оба тренера заинтересованы в наиболее справедливом распределении школьников между группами. Поэтому они стремятся найти такие \(p\) и \(q\), чтобы разница суммарных умений между двумя группами школьников оказалась минимальной. При этом, вообще говоря, не обязательно, чтобы количество школьников в каждой из групп было одинаковым.
Помогите тренерам подобрать такие "справедливые" значения \(p\) и \(q\) (\(0 < p \le q \le N\)), при которых разница в суммарных умениях образованных групп школьников по абсолютной величине будет минимальна.
В первой строке входного файла записано единственное целое число \(N\). Во второй строке содержатся \(N\) неотрицательных целых чисел, не превосходящих \(10^9\) - умения школьников играть в волейбол.
Выведите искомые целые значения \(p\) и \(q\) (\(0 < p \le q \le N\)). Если искомых пар несколько, то выведите любую из них.
Тесты состоят из четырёх групп.
8 5 3 3 3 3 3 7 1
1 2