---> 2 задач <---
    2007(7 задач)
    2008(6 задач)
Страница: 1 Отображать по:

Андрей недавно начал изучать информатику. Одним из первых алгоритмов, который он изучил, был алгоритм Евклида для нахождения наибольшего общего делителя (НОД) двух чисел. Напомним, что наибольшим общим делителем двух чисел a и b называется наибольшее натуральное число x, такое, что и число a, и число b делится на него без остатка.

Алгоритм Евклида заключается в следующем:

1.Пусть a, b — числа, НОД которых надо найти.

2.Если b = 0, то число a — искомый НОД.

3.Если b > a, то необходимо поменять местами числа a и b.

4. Присвоить числу a значение a – b.

5.Вернуться к шагу 2.

Андрей достаточно быстро освоил алгоритм Евклида и вычислил с его помощью много наибольших общих делителей. Поняв, что надо дальше совершенствоваться, ему пришла идея решить новую задачу. Пусть заданы числа a, b, c и d. Требуется узнать, наступит ли в процессе реализации алгоритма Евклида для заданной пары чисел (a, b) такой момент, когда перед исполнением шага 2 число a будет равно c, а число b будет равно d.

Требуется написать программу, которая решает эту задачу.

Входные данные

Первая строка входных данных содержит количество наборов входных данных K (1 ≤ K ≤ 100). Далее идут описания этих наборов. Каждое описание состоит из двух строк. Первая из них содержит два целых числа: a, b (1 ≤ a, b ≤ 1018). Вторая строка – два целых числа: c, d (1 ≤ c, d ≤ 1018).

Все числа в строках разделены пробелом.

Выходные данные

Для каждого набора входных данных выведите слово «YES», если в процессе применения алгоритма Евклида к паре чисел (a, b) в какой-то момент получается пара (c, d). В противном случае выведите слово «NO».

Примеры
Входные данные
2
20 10
10 10
10 7
2 4
Выходные данные
YES
NO
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Во Флатландии с некоторых пор процветают феодальные отношения – у каждого порядочного феодала есть ровно два вассала, у непорядочных – вассалов нет совсем. Каждый феодал строит свой замок в городе на прямой, при этом:

  • высота замка (всегда целое положительное число) должна быть строго больше высот замков его вассалов (для соблюдения субординации).
  • замки первого из двух вассалов и всех вассалов этого вассала должны быть построены слева, второго вассала и его вассалов – справа (для пресечения междоусобиц). Это правило должно выполняться для всех
  • высота замка должна быть минимально возможной (для экономии ресурсов)
  • число всех подчиненных (непосредственно или через промежуточных) у правого и левого вассалов одинаково (для баланса сил).

Для удобства замки феодалов занумерованы натуральными числами по порядку слева направо, начиная с единицы, и разбиты на улицы. Улица (i, j) представляет собой последовательность подряд идущих замков, начиная с замка под номером i и заканчивая замком с номером j (i j)

Однажды в город приехал новый феодал и пожелал выкупить там замок у одного из жителей. Также ему стало интересно узнать социальный статус соседей по улице, однако, город к тому времени так разросся, что феодал уже не мог сделать этого самостоятельно. Напишите программу, которая поможет ему!

Входные данные

Первая строка входного файла содержит число N (1 ≤ N ≤ 30000) — высота замка единственного главного феодала в городе, который никому не подчиняется. Далее, в следующих двух строках идут числа i и j (\(0 \leq i, j < 10^{10000}\)), задающие улицу (i, j), на которой хочет приобрести замок новый феодал (гарантируется, что замки с номерами i и j находятся в черте города, i j, ji ≤ 105).

В выходной файл требуется вывести высоты всех замков на указанной улице слева направо через пробел.

Примечание

Будут оцениваться и частичные решения задачи при малых N. Частичные решения для N<20 набирают до 40 баллов, а для N<50 набирают не более 70 баллов.

Ввод
Вывод
2
1
3
1 2 1
3
3
7
1 3 1 2 1
50
128873293
128873293
1

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест