Страница: 1 Отображать по:

Андрей недавно начал изучать информатику. Одним из первых алгоритмов, который он изучил, был алгоритм Евклида для нахождения наибольшего общего делителя (НОД) двух чисел. Напомним, что наибольшим общим делителем двух чисел a и b называется наибольшее натуральное число x, такое, что и число a, и число b делится на него без остатка.

Алгоритм Евклида заключается в следующем:

1.Пусть a, b — числа, НОД которых надо найти.

2.Если b = 0, то число a — искомый НОД.

3.Если b > a, то необходимо поменять местами числа a и b.

4. Присвоить числу a значение a – b.

5.Вернуться к шагу 2.

Андрей достаточно быстро освоил алгоритм Евклида и вычислил с его помощью много наибольших общих делителей. Поняв, что надо дальше совершенствоваться, ему пришла идея решить новую задачу. Пусть заданы числа a, b, c и d. Требуется узнать, наступит ли в процессе реализации алгоритма Евклида для заданной пары чисел (a, b) такой момент, когда перед исполнением шага 2 число a будет равно c, а число b будет равно d.

Требуется написать программу, которая решает эту задачу.

Входные данные

Первая строка входных данных содержит количество наборов входных данных K (1 ≤ K ≤ 100). Далее идут описания этих наборов. Каждое описание состоит из двух строк. Первая из них содержит два целых числа: a, b (1 ≤ a, b ≤ 1018). Вторая строка – два целых числа: c, d (1 ≤ c, d ≤ 1018).

Все числа в строках разделены пробелом.

Выходные данные

Для каждого набора входных данных выведите слово «YES», если в процессе применения алгоритма Евклида к паре чисел (a, b) в какой-то момент получается пара (c, d). В противном случае выведите слово «NO».

Примеры
Входные данные
2
20 10
10 10
10 7
2 4
Выходные данные
YES
NO

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест