Темы --> Информатика
    Язык программирования(952 задач)
    Алгоритмы(1657 задач)
    Структуры данных(279 задач)
    Интерактивные задачи(17 задач)
    Другое(54 задач)
---> 8 задач <---
Источники --> Личные олимпиады --> Международные олимпиады
    2005(6 задач)
    2006(6 задач)
    2007(6 задач)
    2008(6 задач)
    2009(8 задач)
Страница: 1 2 >> Отображать по:
ограничение по времени на тест
3.0 second;
ограничение по памяти на тест
32 megabytes
Дана строка и подстрока. Требуется определить, сколько раз в строке встречалась подпоследовательность, состоящая из символов подстроки.

Расшифровка письменности Майя оказалась более сложной задачей, чем предполагалось ранними исследованиями. На протяжении более чем двух сотен лет удалось узнать не так уж много. Основные результаты были получены за последние 30 лет.

Письменность Майя основывается на маленьких рисунках, известных как значки, которые обозначают звуки. Слова языка Майя обычно записываются с помощью этих значков, которые располагаются рядом друг с другом в некотором порядке.

Одна из проблем расшифровки письменности Майя заключается в определении этого порядка. Рисуя значки некоторого слова, писатели Майя иногда выбирали позиции для значков, исходя скорее из эстетических взглядов, а не определенных правил. Это привело к тому, что, хотя звуки для многих значков известны, археологи не всегда уверены, как должно произноситься записанное слово.

Археологи ищут некоторое слово \(W\). Они знают значки для него, но не знают все возможные способы их расположения. Поскольку они знают, что Вы приедете на IOI ’06, они просят Вас о помощи. Они дадут Вам \(g\) значков, составляющих слово \(W\), и последовательность \(S\) всех значков в надписи, которую они изучают, в порядке их появления. Помогите им, подсчитав количество возможных появлений слова \(W\).

Задание

Напишите программу, которая по значкам слова \(W\) и по последовательности \(S\) значков надписи подсчитывает количество всех возможных вхождений слова \(W\) в \(S\), то есть количество всех различных позиций идущих подряд \(g\) значков в последовательности \(S\), которые являются какой-либо перестановкой значков слова \(W\) .

Ограничения

1 ≤ \(g\) ≤ 3 000, \(g\) – количество значков в слове \(W\)

\(g\) ≤ |\(S\)| ≤ 3 000 000 где |\(S\)| – количество значков в последовательности \(S\)

Входные данные

На вход программы поступают данные в следующем формате:

СТРОКА 1: Содержит два числа, разделенных пробелом – \(g\) и |\(S\)|.
СТРОКА 2: Содержит \(g\) последовательных символов, с помощью которых записывается слово \(W\) . Допустимы символы: ‘a’-‘z’ и ‘A’-‘Z’; большие и маленькие буквы считаются различными.
СТРОКА 3: Содержит |\(S\)| последовательных символов, которые представляют значки в надписи. Допустимы символы: ‘a’-‘z’ и ‘A’-‘Z’; большие и маленькие буквы считаются различными.

Выходные данные

Единственная строка выходных данных программы должна содержать количество возможных вхождений слова \(W\) в \(S\).

Оценивание

Для части тестов, оцениваемых в 50 баллов, выполняется ограничение \(g\) ≤ 10.

Важно для программирования на PASCAL

По умолчанию во FreePascal переменная типа string имеет ограничение размера в 255 символов. Если Вы хотите использовать более длинные строки, Вы должны добавить директиву {$ H +} в ваш код, сразу после строки program ...;.

Примеры
Входные данные
4 11
cAda
AbrAcadAbRa
Выходные данные
2
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
32 megabytes

После победы в великой битве Король Ягуар хочет построить пирамиду, которая будет одновременно монументом в честь победы и гробницей для погибших солдат. Пирамида будет построена на поле боя. Она должна иметь прямоугольное основание, состоящее из \(a\) столбцов и \(b\) строк. Для сохранения останков и оружия павших солдат внутри основания пирамиды будет располагаться небольшая прямоугольная комната, состоящая из \(c\) столбцов и \(d\) строк.

Архитекторы Короля представили поле боя в виде прямоугольной сетки. Эта сетка состоит из квадратных клеток единичной площади и имеет \(m\) столбцов и \(n\) строк. Для каждой клетки они измерили ее высоту и получили некоторое целое число.

Основание пирамиды и комната должны покрывать включаемые ими клетки полностью, а их стороны должны быть параллельны сторонам поля боя. Высоты клеток, составляющих комнату, должны остаться неизменными, а высоты всех клеток основания пирамиды будут выровнены с помощью перемещения песка с более высоких клеток на более низкие. В результате этого высота основания пирамиды будет равна среднему арифметическому высот всех его клеток (за исключением клеток комнаты). Архитекторы могут выбрать любое местоположение для комнаты внутри пирамиды, но обязательно оставлять вокруг комнаты стену основания пирамиды толщиной хотя бы в одну клетку.

Помогите архитекторам выбрать наилучшее место для расположения пирамиды и комнаты внутри нее так, чтобы высота основания пирамиды была максимально возможной при заданных размерах. На рисунке показан пример поля боя, где число в каждой клетке обозначает ее высоту. Клетки, составляющие основание пирамиды, обозначены серым цветом, а белые клетки внутри основания пирамиды соответствуют расположению комнаты. На этом рисунке представлен пример оптимального решения.

Задание

Напишите программу, которая по заданным размерам поля боя, пирамиды и комнаты, а также по заданным высотам всех клеток будет находить такое расположение пирамиды и комнаты внутри нее, что получившаяся высота основания пирамиды будет максимально возможной.

Ограничения

3 ≤ \(m\) ≤ 1000
3 ≤ \(n\) ≤ 1000
3 ≤ \(a\) ≤ \(m\)
3 ≤ \(b\) ≤ \(n\)
1 ≤ \(c\) ≤ \(a\) – 2
1 ≤ \(d\) ≤ \(b\) – 2
Все высоты – целые числа от 1 до 100.

Входные данные

Ваша программа получает входные данные в следующем формате:
СТРОКА 1: Содержит шесть целых чисел, разделенных пробелами, в следующем порядке: \(m\), \(n\), \(a\), \(b\), \(c\) и \(d\).
СЛЕДУЮЩИЕ \(n\) СТРОК: Каждая из этих строк содержит m целых чисел, разделенных пробелами. Эти числа соответствуют высотам клеток в одной строке сетки. Первая из этих строк соответствует верхней строке (строке 1) сетки, а последняя – нижней строке (строке \(n\)). При этом \(m\) чисел в каждой строке соответствуют высотам клеток этой строки, начиная со столбца 1.

Выходные данные

Ваша программа должна вывести следующие данные:
СТРОКА 1: Должна содержать два целых числа, разделенные пробелом, – координаты левой верхней клетки основания пирамиды, при этом первое число соответствует столбцу, а второе – строке.
СТРОКА 2: Должна содержать два целых числа, разделенные пробелом, – координаты левой верхней клетки комнаты, при этом первое число соответствует столбцу, а второе – строке.

Замечание

Если существует несколько оптимальных положений пирамиды и комнаты, выведите любое из них.

Оценивание

Ряд тестов с общей суммой 30 баллов будет удовлетворять следующим ограничениям:
3 ≤ \(m\) ≤ 10
3 ≤ \(n\) ≤ 10

Примеры
Входные данные
8 5 5 3 2 1
1 5 10 3 7 1 2 5
6 12 4 4 3 3 1 5
2 4 3 1 6 6 19 8
1 1 1 3 4 2 4 5
6 6 3 3 3 2 2 2
Выходные данные
1
4 1
6 2
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
16 megabytes

Город Мехико расположен в прекрасной долине, известной как Долина Мехико, на месте которой много лет назад было озеро. Около 1300 года ацтекские религиозные лидеры выпустили указ о том, что центр озера должен быть засыпан, чтобы построить столицу их империи. В настоящее время озеро полностью осушено.

Вокруг озера до появления ацтеков были расположены c прибрежных городов. Некоторые из этих городов заключили между собой коммерческие соглашения. Между городами, установившими коммерческие соглашения, по озеру на лодках перевозились различные товары. Любую пару городов можно было соединить отрезком прямой, полностью проходящим через озеро.

В какой-то момент короли городов решили упорядочить товароперевозки. Они разработали маршрут товароперевозок, который соединяет все города вокруг озера. Маршрут удовлетворяет следующим условиям:

*Он начинается в каком-либо городе, проходит через каждый прибрежный город и заканчивается в городе, отличном от того, в котором он начался.
*Маршрут проходит через каждый город ровно один раз.
*Любые два последовательно посещаемых города маршрута обязаны иметь между собой коммерческое соглашение.
*Маршрут состоит из отрезков прямых, каждый из которых соединяет два последовательно посещаемых города маршрута.
*Чтобы избежать столкновения лодок, маршрут не должен иметь самопересечений.


На рисунке показано озеро и города вокруг него. Тонкие и жирные линии отрезков обозначают коммерческие соглашения между городами. Жирные линии показывают маршрут грузоперевозок, начинающийся в городе 2 и заканчивающийся в городе 5.

Этот маршрут нигде не имеет самопересечений. Но если построить маршрут, идущий из города 2 в город 6, затем в город 5, а затем в город 1, то он будет неправильным, поскольку имеет самопересечения.

Города нумеруются целыми числами от 1 до \(c\) по направлению часовой стрелки.

Задание

Напишите программу, которая по заданному числу городов \(c\) и списку коммерческих соглашений между городами, найдет маршрут товароперевозок, удовлетворяющий указанным выше условиям.

Ограничения

3 ≤ \(c\) ≤ 1000, \(c\) – число городов вокруг озера

Входные данные

На вход Вашей программы поступают данные в следующем формате:

СТРОКА 1: Содержит целое число \(c\).
СТРОКА 2: Содержит целое число \(n\) – количество коммерческих соглашений.
СЛЕДУЮЩИЕ \(n\) СТРОК: Каждая строка описывает одно коммерческое соглашение (одно соглашение описывается один раз). В строке задаются два целых числа, разделенных пробелами, которые соответствуют номерам городов, заключивших между собой коммерческое соглашение.

Выходные данные

Если возможно построить маршрут товароперевозок, выведите c строк, в каждой из которых записано целое число. Эти числа представляют собой порядок посещения городов по маршруту товароперевозок. Если невозможно построить маршрут товароперевозок, удовлетворяющий всем указанным требованиям, выведите одну строку, содержащую отрицательное целое число -1.

Замечание

Если существует несколько маршрутов товароперевозок, удовлетворяющих всем указанным требованиям, выведите любой из них.

Оценивание

Ряд тестов с общей суммой 30 баллов будет удовлетворять следующим ограничениям:
3 ≤ \(m\) ≤ 10
3 ≤ \(n\) ≤ 10

Примеры
Входные данные
7
9
1 4
5 1
1 7
5 6
2 3
3 4
2 6
4 6
6 7
Выходные данные
5
6
7
1
4
3
2
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Байтмен владеет красивейшим садом в Байттауне, в котором он посадил n роз. Пришло лето, и цветы выросли большими и красивыми. Байтмен понял, что он не в состоянии самостоятельно ухаживать за всеми розами, и решил нанять двух садовников в помощь. В этом случае ему нужно выбрать две прямоугольные области, чтобы каждый из садовников ухаживал за розами в одной их них. Области не должны пересекаться, и в каждой должно быть ровно \(k\) роз.

Байтмен хочет установить забор, огораживающий прямоугольные области. Для экономии денег забор должен быть как можно короче. Ваша задача – помочь Байтмену выбрать две прямоугольные области.

Сад представляет собой прямоугольник длиной \(l\) метров и шириной \(w\) метров, который разделен на \(l\)·\(w\) одинаковых единичных квадратов размером 1x1 метр каждый. Зафиксируем координатную систему так, чтобы оси координат были параллельны сторонам сада. Все квадраты имеют целые координаты (\(x\),\(y\)), удовлетворяющие ограничениям 1 <= \(x\) <= \(l\), 1 <= \(y\) <= \(w\). В каждом единичном квадрате может содержаться любое количество роз.

Стороны прямоугольных областей, которые выбираются, должны быть параллельны сторонам сада, а их угловые единичные квадраты – иметь целые координаты. Прямоугольная область с угловыми единичными квадратами (\(l_1\),\(w_1\)), (\(l_1\),\(w_2\)), (\(l_2\),\(w_1\)) и (\(l_2\),\(w_2\)) (для 1 <= \(l_1\) <= \(l_2\) <= \(l\) и 1 <= \(w_1\) <= \(w_2\) <= \(w\)):

• содержит все единичные квадраты с координатами (\(x\),\(y\)), которые удовлетворяют условию \(l_1\) <= \(x\) <= \(l_2\) и \(w_1\) <= \(y\) <= \(w_2\), и
• имеет периметр 2 · (\(l_2\)−\(l_1\)+1)+ 2 · (\(w_2\)−\(w_1\)+1).

Две прямоугольных области не должны пересекаться, то есть, они не должны иметь ни одного общего квадрата. Даже если они имеют общую сторону или её часть, они ограждаются разными заборами.

Задание

Напишите программу, которая:

• читает из стандартного ввода размеры сада, общее количество роз в саду, количество роз, которое должно находиться в каждой прямоугольной области, и позицию каждой розы в саду, определяемую координатами единичного квадрата, в котором она находится;
• находит угловые единичные квадраты двух таких прямоугольных областей с минимальной суммой периметров, которые удовлетворяют заданным условиям;
• выводит в стандартный вывод минимальное значение суммы периметров двух непересекающихся прямоугольных областей, каждая из которых содержит точно заданное количество роз (или единственное слово NO, если такой пары прямоугольных областей не существует).

Входные данные

Первая строка стандартного ввода содержит два числа: \(l\) и \(w\) (1 <= \(l\),\(w\) <= 250), разделенных одним пробелом – длину и ширину сада. Во второй строке задаются два числа: \(n\) и \(k\) (2 <= \(n\) <= 5000, 1 <= \(k\) <= \(n\)/2), записанных через пробел и обозначающих общее количество роз в саду и количество роз, которое должно быть в каждой из прямоугольных областей. Следующие \(n\) строк содержат позиции роз, по одной розе в строке. Каждая (\(i\)+2)-я строка содержит два числа \(l_i\), \(w_i\) (1 <= \(l_i\) <= \(l\), 1 <= \(w_i\) <= \(w\)), разделенных одним пробелом – координаты квадрата, содержащего \(i\)-ю розу.

В одном квадрате может содержаться две или большее количество роз.

Выходные данные

В первую и единственную строку стандартного вывода ваша программа должна вывести одно число – минимальную сумму периметров двух неперекрывающихся прямоугольных областей, каждая из которых содержит ровно \(k\) роз, или единственное слово NO, если таких прямоугольников нет.

Примеры
Входные данные
6 5
7 3
3 4
3 3
6 1
1 1
5 5
5 5
3 1
Выходные данные
22

Почти все Королевство Байтленд покрыто лесами и реками. Малые реки сливаются в более крупные реки, которые, в свою очередь, сливаются друг с другом; в конечном счете, все реки сливаются вместе в одну большую реку. Большая река впадает в море вблизи города Байттаун.

В Байтленде имеется n лесозаготовительных поселков, каждый из которых расположен вблизи какой-либо реки. В настоящее время в Байттауне находится большая пилорама, которая обрабатывает все деревья, срубленные в Королевстве. Деревья сплавляются вниз по рекам от поселков, где они срублены, к пилораме в Байттауне. Король Байтленда решил поставить k дополнительных пилорам в поселках, чтобы уменьшить стоимость сплава деревьев. После установки пилорам деревья не обязательно должны сплавляться в Байттаун, а могут быть обработаны на ближайшей пилораме, находящейся ниже по течению рек. Очевидно, что деревья, срубленные в окрестности поселка с пилорамой, вообще не сплавляются по рекам.

Необходимо отметить, что реки в Байтленде не разветвляются. Из этого следует, что для каждого поселка существует единственный путь сплава деревьев вниз по течению рек от него в Байттаун.

Королевские счетоводы подсчитали количество деревьев, срубаемых в каждом поселке за год. Вам необходимо определить, в каких поселках следует установить пилорамы, чтобы минимизировать общую стоимость сплава деревьев за год. Стоимость сплава одного дерева составляет один цент за каждый километр пути.

Задание

Напишите программу, которая:
<> * читает из стандартного ввода количество поселков, количество дополнительных пилорам, которые будут установлены, количество срубленных в каждом поселке деревьев и описание рек,
*вычисляет минимальную стоимость сплава деревьев после установки дополнительных пилорам,
*выводит результат в стандартный вывод.

Входные данные

Первая строка входных данных содержит два целых числа: \(n\) — количество поселков, не считая Байттауна (2 ≤ \(n\) ≤ 100), и \(k\) — количество дополнительных пилорам, которые будут установлены (1 ≤ \(k\) ≤ 50 и \(k\) ≤ \(n\) ). Поселки нумеруются числами 1 , 2 , ...., n , а Байттаун имеет номер 0.

Каждая из последующих n строк содержит три целых числа, разделенных одним пробелом. Строка i + 1 содержит:

\(w_i\) — количество деревьев, срубаемых в поселке \(i\) за год (0 ≤ \(w_i\) ≤ 10 000),
\(v_i\) — ближайший поселок (либо Байттаун) вниз по реке от поселка \(i\) (0 ≤ \(v_i\) ≤ \(n\) ),
\(d_i\) — расстояние (в километрах) по реке от поселка \(i\) до поселка \(v_i\) (1 ≤ \(d_i\) ≤ 10 000).
Гарантируется, что суммарная стоимость сплава всех деревьев к пилораме в Байттауне не превосходит 2 000 000 000 центов в год.
В 50% тестов число n не превосходит 20.

Выходные данные

Первая и единственная строка выходных данных должна содержать одно целое число: минимальную стоимость сплава (в центах).

Пояснения

Рисунок сверху иллюстрирует входные данные примера. Номера поселков указаны внутри кругов. Числа под кругами обозначают количество деревьев, срубаемых вблизи данного поселка. Числа над стрелками указывают длины рек.

Пилорамы должны быть установлены в поселках 2 и 3.

Примеры
Входные данные
4 2
1 0 1
1 1 10
10 2 5
1 2 3
Выходные данные
4

Страница: 1 2 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест