---> 59 задач <---
Страница: << 3 4 5 6 7 8 9 >> Отображать по:

В школу бальных танцев профессора Падеграса записались n учеников — мальчиков и девочек. Профессор построил их в один ряд, и хочет отобрать из них для первого занятия группу стоящих подряд учеников, в которой количество мальчиков и девочек одинаково. Сколько вариантов выбора есть у профессора?

Входные данные

В первой строке задано число n (1 ≤ n ≤ 106). Во второй строке задается описание построенного ряда из мальчиков и девочек — строка из n символов a и b (символ a соответствует девочке, а символ b — мальчику).

Выходные данные

В единственной строке должно содержаться единственное число — количество вариантов выбора требуемой группы.

Система оценки

Тесты в этой задаче разбиты на группы. Баллы начисляются только за группу целиком в том случае, когда пройдены все тесты группы, а также все тесты предыдущих групп.

  1. Тест 1. Тест из условия, оценивается в 0 баллов.
  2. Тесты 2–8. \(N \le 101\), оцениваются в 30 баллов.
  3. Тесты 9–14. \(N \le 6\,000\), оцениваются в 30 баллов.
  4. Тесты 15–20. Дополнительных ограничений нет, оцениваются в 40 баллов.

Примеры
Входные данные
8
aabbaabb
Выходные данные
10
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

В известном городе Санкт-Тверь решили построить новый микрорайон, представляющий в плане прямоугольную область. Границы микрорайона и его улицы по проекту ориентированы строго по сторонам света, причем улицы разбивают микрорайон на кварталы размером 1 км × 1 км.

Во время привязки исходного проекта к местности выяснилось, что некоторые кварталы по проекту микрорайона оказываются полностью или частично расположенными на топком болоте. Область, занимаемая болотом, связна и со всех сторон окружена подлежащими застройке кварталами микрорайона (область  связна, если из любой ее точки можно добраться в любую другую, не выходя за пределы области).

Для сохранения экологии местности и обеспечения безопасности жителей занятую болотом область решили оградить стеклянным забором. Забор должен проходить только по границам кварталов проектируемого микрорайона, отделяя болото, и, возможно, некоторые кварталы проекта, не занятые болотом, от остальной части микрорайона.

Для экономии строительных материалов забор должен иметь минимальную длину. Среди всех заборов минимальной длины нужно выбрать тот, для которого площадь части микрорайона, попадающей внутрь забора, минимальна.

Требуется написать программу, которая спроектирует забор с заданными выше свойствами.

Входные данные

Входные данные содержат описание многоугольника — границы области, состоящей только из кварталов c заболоченными участками. Стороны многоугольника параллельны осям координат.

В первой строке задано целое число n — количество вершин в многоугольнике (4 ≤ n ≤ 100 000, n четное). В каждой из следующих n строк заданы два целых числа — координаты очередной вершины при обходе этого многоугольника против часовой стрелки. Все числа не превосходят 109 по абсолютной величине. Никакие три последовательные вершины границы не лежат на одной прямой. Граница многоугольника не содержит самопересечений и самокасаний.

Выходные данные

Вывод программы на стандартный поток должен содержать описание многоугольника, определяющего искомый забор. Формат описания многоугольника тот же, что и для входных данных. Никакие три последовательные вершины этого многоугольника не должны лежать на одной прямой.

Примеры
Входные данные
8
0 0
9 0
9 9
6 9
6 3
3 3
3 6
0 6
Выходные данные
6
0 0
9 0
9 9
6 9
6 6
0 6
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Ассоциация Тапкодер организует Всемирное парное соревнование сильнейших программистов. К участию в соревновании допущены первые 2k зарегистрировавшихся участников, которым присвоены номера от 1 до 2k.

Соревнование будет проходить по олимпийской системе. В первом туре первый участник встречается со вторым, третий с четвертым и так далее. В каждой паре победителем становится участник, первым решивший предложенную задачу, при этом ничьих не бывает. Все победители очередного тура и только они являются участниками следующего тура. В каждом туре пары составляются из участников в порядке возрастания присвоенных им номеров. Соревнование продолжается до тех пор, пока не останется один победитель.

Организаторам стало известно, что некоторые пары участников заранее договорились о результате встречи между собой, если такая встреча состоится. Для всех остальных встреч, кроме n договорных, возможен любой исход.

Некоторые m участников соревнования представили свои резюме в ассоциацию Тапкодер с целью поступления на работу. Организаторов интересует, до какого тура может дойти каждый из претендентов при наиболее благоприятном для него стечении обстоятельств. При этом для каждого участника в отдельности считается, что все недоговорные встречи, в том числе те, в которых он не участвует, закончатся так, как ему выгодно, а все состоявшиеся договорные встречи закончатся в соответствии с имеющимися договоренностями.

Требуется написать программу, которая для каждого из претендентов определяет максимальный номер тура, в котором он может участвовать.

Входные данные

В первой строке заданы три целых числа k (1 ≤ k ≤ 60), n (0 ≤ n ≤ 100 000) и m (1 ≤ m ≤ 100 000). В следующих n строках описаны n пар участников, которые договорились между собой о том, что первый из двух участников пары выиграет встречу, если она состоится. Гарантируется, что каждая пара участников присутствует во входных данных не более одного раза, при этом, если задана пара x y, то пары y x быть не может, кроме того, x y. В последней строке перечислены номера участников, желающих работать в Тапкодере, в порядке возрастания их номеров. Все номера претендентов на работу различны.

Выходные данные

Выходные данные должны содержать m целых чисел — максимальные номера туров, до которых могут дойти соответствующие претенденты на работу. Туры нумеруются от 1 до k.

Комментарии к примерам тестов.

1. У каждого из участников есть возможность выйти в финал, так как договорных матчей нет.

2. Если четвертый участник выиграет у третьего, то договорная встреча первого и третьего не состоится, что благоприятно для первого.

3. Первому участнику благоприятно во втором туре играть с третьим, а не с четвертым, в свою очередь, четвертый может выиграть у третьего и также выйти в финал.

Система оценки

Тесты к этой задаче состоят из четырех групп, баллы начисляются только при прохождении всех тестов группы и всех тестов предыдущих групп.

0. Тесты 1–10. k <= 5. Эта группа оценивается в 30 баллов.

1. Тесты 11–14. k <= 20. Эта группа оценивается в 20 баллов.

2. Тесты 15–18. k <= 30. Эта группа оценивается в 20 баллов.

3. Тесты 19–23. Дополнительные ограничения отсутствуют. Эта группа оценивается в 30 баллов.

Примеры
Входные данные
2 0 3
1 3 4
Выходные данные
2 2 2
Входные данные
3 1 1
3 1
1
Выходные данные
3
Входные данные
3 3 4
1 2
1 3
4 1
1 2 3 4
Выходные данные
3 1 2 3
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

К предстоящей олимпиаде в Сочи требуется возвести N олимпийских объектов. Процесс строительства каждого объекта определяется освоением выделяемых на него денежных средств.

В строительстве объектов готовы участвовать K фирм. Фирмы имеют разные строительные мощности, выраженные в количестве денежных средств, которые фирма может осваивать в единицу времени.

В каждый момент времени фирма может осуществлять работы только на одном объекте. В строительстве одного объекта не могут одновременно участвовать несколько фирм. В любой момент времени любой объект может быть передан для продолжения строительства любой фирме.

Администрация строительства олимпийских объектов заинтересована в скорейшем освоении денежных средств, поэтому хочет составить такой график работ, при следовании которому строительство будет завершено в кратчайшие сроки. В графике будет указано время, в течение которого тот или иной объект будет строиться какой-то фирмой.

Напишите программу, результаты работы которой позволят администрации построить требуемый график.

Входные данные

Первая строка содержит целое число N — количество объектов (1   50). Во второй строке содержатся разделенные пробелами целочисленные значения S1S2, S3, …, SN объемов денежных средств, выделяемых для строительства каждого из объектов. Числа Si выражены в тысячах рублей, положительные и не превышают 1000.

В третьей строке находится целое число K — количество строительных фирм (1   50). Четвертая строка содержит разделенные пробелами целочисленные значения мощностей каждой из фирм V1, V2, V3, …, VK в тыс.руб/час. Числа Vj положительные и не превышают 1000.

Выходные данные

Первая строка содержит действительное число T — время в часах окончания всех работ, считая с начала строительства, выведенное не менее чем с тремя точными знаками после запятой. Далее в каждой строке содержатся разделенные пробелами три числа: t, i, j, где действительное число t — время от начала строительства в часах, в которое j-я фирма приступает к строительным работам на i-м объекте.

Значения времен необходимо выводить с максимально возможной точностью.

Строки должны быть отсортированы по неубыванию t.

Примеры
Входные данные
2
24 20
2
3 2
Выходные данные
8.800
0 1 1
0 2 2
6.4000000 1 2
6.4000000 2 1
Входные данные
3
100 100 100
4
5 5 10 10
Выходные данные
12.00000
0 1 3
0 2 4
0 3 1
4 2 2
4 3 4
8 1 1
8 3 4
8 2 3
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Заданы вещественные числа. Требуется определить, возможно ли упорядочить их с помощью стека.

Для транспортирования материалов из цеха А в цех В используется конвейер. Материалы упаковываются в одинаковые контейнеры и размещаются на ленте один за одним в порядке изготовления в цехе А. Каждый контейнер имеет степень срочности обработки в цехе В. Для упорядочивания контейнеров по степени срочности используют накопитель, который находится в конце конвейера перед входом в цех В. Накопитель работает пошагово, на каждом шаге возможны следующие действия:

накопитель перемещает первый контейнер из ленты в цех В;

накопитель перемещает первый контейнер из строки в склад (в складе каждый следующий контейнер помещается на предыдущий);

накопитель перемещает верхний контейнер из склада в цех В.

Напишите программу, которая по последовательности контейнеров определит, можно ли упорядочить их по степени срочности пользуясь описанным накопителем.

Входные данные

Входной файл в первой строке содержит количество тестов N. Далее следует N строк, каждый из которых описывает отдельный тест и содержит целое число K (1 K 10000) — количество контейнеров в последовательности и K действительных чисел — степеней срочности контейнеров в порядке их поступления из цеха А (меньшим числам соответствует большая степень срочности).

Выходные данные

Каждая строка выходного файла должна содержать ответ для одного теста. Необходимо вывести 1, если необходимое упорядочивание возможно, или 0 в противном случае.

Примеры
Входные данные
2
2 2.9 2.1
3 5.6 9.0 2.0
Выходные данные
1
0

Страница: << 3 4 5 6 7 8 9 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест