Вера очень много работала в этом году, подавая своим коллегам пример настоящего труженика. На восьмое марта за прекрасное исполнение служебных обязанностей Вера получила подарок — долгожданный отпуск в Теплой Стране! Тяжелые трудовые будни закончились,
и Вера уже нежится на пляже на берегу Теплого Моря.
Любимое хобби Веры — пляжный волейбол, и как же Вера ждала момента, когда она сможет испытать невероятный азарт этой игры! Вера уже познакомилась с несколькими симпатичными волейболистами, но она пока не решила, какая же команда достойна иметь в своем
составе такого замечательного игрока.
Каждый из N капитанов команд мечтает заполучить Веру в состав своей команды, поэтому они хотят максимально проявить себя. Так как поиграть хотят все, они решили действовать следующим образом: все N команд выстроились в очередь. Первый матч играется между
двумя командами, которые стоят в очереди раньше остальных. Победитель игры остается на площадке, а проигравший отправляется в конец очереди. В каждом из следующих матчей победитель предыдущего играет с первой командой из очереди, а про- игравший
в очередной встрече опять становится в конец очереди. Каждая команда имеет некоторую силу, причем для простоты будем предполагать, что силы всех команд различны, а победителем в матче является команда, сила которой больше. Матчей может быть
как угодно много.
Вера решила для себя, что она будет действовать по самому справедливому принципу «считалочки»: она будет играть с одной из двух команд, играющих матч с соответствующем считалке номером \(K\). Но затем Вера поняла, что уже выбрала себе команду, в которой
хотела бы играть, причем ориентируясь не только на ее силу. Ей известны \(Q\) считалок, соответствующих различным значениям \(K\). Для каждого из этих чисел \(K_i\) необходимо узнать, а кто же именно будет сражаться за столь ценный приз, то
есть какие две команды будут играть в матче с номером \(K_i\).
Формат выходного файла
Выведите \(Q\) строк: для каждого интересующего Веру числа \(K_i\) два числа в любом порядке — силы команд, сыграющих на \(K_i\)-м шаге. Первая строка должна содержать ответ на первый запрос, вторая — на второй и так далее.
Комментарии
Разберем первый тест из условия:
Таким образом, в единственном интересующем Веру третьем матче сыграют команды с силами 4 и 3.
Система оценивания
Тесты к этой задаче состоят из четырех групп.
0. Тесты 1–2. Тесты из условия, оцениваются в ноль баллов.
1. Тесты 3–18. В тестах этой группы \(N\) ≤ 2 000, Q = 1, \(K_i\) ≤ 2 000. Эта группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы.
2. Тесты 19–25. В тестах этой группы \(N\) ≤ 100 000, 1 ≤ \(Q\) ≤ 10, \(K_i\) ≤ 100 000. Эта группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы. Решение будет тестироваться на тестах этой группы только в случае
прохождения всех тестов из первой группы.
3. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 40 баллов. Решение будет тестироваться на тестах этой группы offline, т. е. после окончания тура, причем только в случае прохождения всех тестов из первой и второй
групп. Тесты в этой группе оцениваются независимо.