Вера очень много работала в этом году, подавая своим коллегам пример настоящего труженика. На восьмое марта за прекрасное исполнение служебных обязанностей Вера получила подарок — долгожданный отпуск в Теплой Стране! Тяжелые трудовые будни закончились, и Вера уже нежится на пляже на берегу Теплого Моря.
Любимое хобби Веры — пляжный волейбол, и как же Вера ждала момента, когда она сможет испытать невероятный азарт этой игры! Вера уже познакомилась с несколькими симпатичными волейболистами, но она пока не решила, какая же команда достойна иметь в своем составе такого замечательного игрока.
Каждый из N капитанов команд мечтает заполучить Веру в состав своей команды, поэтому они хотят максимально проявить себя. Так как поиграть хотят все, они решили действовать следующим образом: все N команд выстроились в очередь. Первый матч играется между двумя командами, которые стоят в очереди раньше остальных. Победитель игры остается на площадке, а проигравший отправляется в конец очереди. В каждом из следующих матчей победитель предыдущего играет с первой командой из очереди, а про- игравший в очередной встрече опять становится в конец очереди. Каждая команда имеет некоторую силу, причем для простоты будем предполагать, что силы всех команд различны, а победителем в матче является команда, сила которой больше. Матчей может быть как угодно много.
Вера решила для себя, что она будет действовать по самому справедливому принципу «считалочки»: она будет играть с одной из двух команд, играющих матч с соответствующем считалке номером \(K\). Но затем Вера поняла, что уже выбрала себе команду, в которой хотела бы играть, причем ориентируясь не только на ее силу. Ей известны \(Q\) считалок, соответствующих различным значениям \(K\). Для каждого из этих чисел \(K_i\) необходимо узнать, а кто же именно будет сражаться за столь ценный приз, то есть какие две команды будут играть в матче с номером \(K_i\).
Первая строка входных данных содержит единственное целое число \(N\) — количество команд (2 ≤ \(N\) ≤ 100 000). Вторая строка содержит \(N\) различных чисел от 1 до \(N\) — силы команд: первое число — сила команды, стоящей в начале очереди, второе — сила следующей по очереди команды, ..., последнее — сила команды, стоящей в конце очереди.
Третья строка содержит единственное целое число \(Q\) (1 ≤ \(Q\) ≤ 100 000) — количество известных Вере считалок. Каждая из следующих Q строк содержит число \(K_i\) (1 ≤ Ki ≤ 1018) — номер очередного интересующего Веру матча. Обратите внимание, \(K_i\) может быть больше \(N\).
Выведите \(Q\) строк: для каждого интересующего Веру числа \(K_i\) два числа в любом порядке — силы команд, сыграющих на \(K_i\)-м шаге. Первая строка должна содержать ответ на первый запрос, вторая — на второй и так далее.
Разберем первый тест из условия:
Таким образом, в единственном интересующем Веру третьем матче сыграют команды с силами 4 и 3.
Тесты к этой задаче состоят из четырех групп.
0. Тесты 1–2. Тесты из условия, оцениваются в ноль баллов.
1. Тесты 3–18. В тестах этой группы \(N\) ≤ 2 000, Q = 1, \(K_i\) ≤ 2 000. Эта группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы.
2. Тесты 19–25. В тестах этой группы \(N\) ≤ 100 000, 1 ≤ \(Q\) ≤ 10, \(K_i\) ≤ 100 000. Эта группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов из первой группы.
3. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 40 баллов. Решение будет тестироваться на тестах этой группы offline, т. е. после окончания тура, причем только в случае прохождения всех тестов из первой и второй групп. Тесты в этой группе оцениваются независимо.
4 1 3 2 4 1 3
3 4
4 2 1 4 3 3 1 5 2
2 1 4 2 2 4
На отдыхе в Теплой Стране Вера познакомилась с симпатичным волейболистом- трактористом Петром. Турист Петр, кстати, собирается после отличного отдыха в Теплой Стране отправиться в путешествие по городам Европы. Как известно, Европа обладает развитой транспортной системой: в Европе есть \(V\) интересующих Петра городов и \(E\) маршрутов ночных поездов. Каждый маршрут соединяет два различных города, время в пути составляет одну ночь. Поезда по маршруту ходят в обоих направлениях.
Основной целью поездки Петра является осмотр местных достопримечательностей. По- скольку Петр — невероятно занятой человек, то он решил, что все путешествие должно занимать не более четырех дней. Петр уже многое повидал, поэтому на осмотр достопримечательностей в каждом городе Петр тратит ровно один день. Он хочет составить наиболее практичный тур: каждый день он будет тратить на осмотр города, а каждую ночь — на переезд ночным поездом между городами. Разумеется, Петр не имеет ни малейшего желания посещать один город несколько раз.
Но на этом прагматичность Петра не заканчивается: Петр, как настоящий турист, хочет посмотреть на самые красивые европейские достопримечательности. Он долго изучал справочники и для каждого города оценил свою ожидаемую радость от его посещения \(p_i\). Теперь он хочет найти маршрут, при котором его радость будет наибольшей. Помогите Петру найти такой маршрут.
В первой строке входных данных заданы два целых числа \(V\) и \(E\) (1 ≤ \(V\); \(E \le 3*10^5\)) — количество городов и маршрутов поездов, соответственно. В следующей строке заданы V целых чисел \(p_i\) (1 ≤ \(p_i\) ≤ \(10^8\)), где \(p_i\) обозначает ожидаемую радость от посещения го- рода с номером \(i\). В следующих \(E\) строках заданы описания маршрутов поездов. Каждое описание состоит из пары различных чисел \(a_i\) и \(b_i\) (1 ≤ \(a_i\); \(b_i\) ≤ V\( \)) — номеров городов, между которыми курсирует этот маршрут поезда. Гарантируется, что между каждой парой городов существует не более одного маршрута поезда.
В первой строке выходных данных выведите число K (1 ≤ K ≤ 4) — количество городов в оптимальном маршруте туриста Петра. В следующей строке выведите номера этих городов в порядке посещения. Города нумеруются начиная с единицы. Если оптимальных маршрутов несколько, выведите любой из них.
Тесты к этой задаче состоят из пяти групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов предыдущих групп.
0. Тесты 1–2. Тесты из условия, оцениваются в ноль баллов.
1. Тесты 3–16. В тестах этой группы \(V\); \(E\) ≤ 100. Эта группа оценивается в 20 баллов
2. Тесты 17–32. В тестах этой группы \(V\); \(E\) ≤ 1 000. Эта группа оценивается в 20 баллов.
3. Тесты 33–53. В тестах этой группы \(V\) ≤ 3 000, \(E\) ≤ 60 000. Эта группа оценивается в 30 баллов.
4. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 30 баллов. Решение будет тестироваться на тестах этой группы offline, т. е. после окончания тура.
5 4 4 2 3 1 5 1 2 2 3 3 4 4 5
4 2 3 4 5
4 3 1 2 3 4 1 2 1 3 1 4
3 4 1 3
Пафнутий и его друзья — большие любители разнообразных настольных игр. Особенно им нравятся игры, требующие как можно быстрее производить в уме непростые вычисления, поэтому абсолютным хитом их вечерних посиделок в аудиториях НУОП (Неизвестного университета олимпиадного программирования) стала игра «Шустрая черепашка». В комплект игры входят:
* Клетчатое поле из \(N\) рядов по \(M\) клеток. Каждая клетка поля либо свободна, либо блокирована для перемещения.
* Q игровых карточек. Каждая карточка содержит описание множества стартовых клеток A, множества дополнительно блокируемых клеток B и множества конечных клеток C. Множества A, B и C непусты, попарно не пересекаются и состоят из свободных клеток.
* Маленькая фишка в форме черепашки.
Правила игры очень просты. Игроки последовательно разыгрывают игровые карточки. Как только открывается очередная карточка, игрокам необходимо вычислить, сколько существует хороших троек клеток (\(a_i b_j c_k)\), где \(a_i \in A\), \(b_j \in B\), \(c_k \in C\). Тройка клеток называется хорошей, если можно провести черепашку из стартовой клетки ai в конечную клетку \(c_k\), не посещая при этом клетку \(b_j\). На перемещение черепашки наложено три условия:
1. Черепашка имеет право перемещаться только вниз и вправо в пределах поля.
2. Находиться на блокированных клетках запрещено
3. Клетка \(b_j\) также блокируется для перемещения
Так как таблицу с правильными ответами создатели не включили в комплект, в пылу игры постоянно возникают споры о правильности того или иного значения. Для установления истины ребята попросили вас посчитать ответы для данного комплекта.
Первая строка входного файла содержит два целых числа \(N\) и \(M\) (1 ≤ \(N\), \(M\) ≤ 150) — количество строк и столбцов игрового поля.
Следующие \(N\) строк по \(M\) символов описывают игровое поле в порядке следования сверху вниз, слева направо. Символ ‘.’ соответствует свободной клетке, а ‘#’ — занятой. Строки нумеруются от 1 до \(N\), столбцы — от 1 до \(M\)
Следующая строка содержит целое число \(Q\) (1 ≤ \(Q\) ≤ 100 000) — количество игровых карточек.
Далее следуют \(Q\) блоков, описывающих карточки. Каждый блок состоит из трех строк, описывающих множества \(A\), \(B\) и \(C\) соответственно. Первое число описания определяет размер соответствующего множества, после чего перечисляются его клетки. Каждая клетка задается двумя числами — номером строки и номером столбца. Все клетки в описании различны. Смотрите комментарии к примеру для лучшего понимания формата входных данных.
Гарантируется, что все множества непусты, все клетки всех множеств являются свободными и никакая клетка не принадлежит более чем одному множеству из какой-то карточки.
В выходной файл выведите ровно \(Q\) чисел по одному на строке — правильные ответы на карточки в порядке их следования во входном файле.
В приведенном примере игровой комплект содержит две карточки
Во всех тройках первой карточки черепашка стартует в верхнем левом углу и финиширует в правом нижнем. Несложно видеть, что это возможно сделать, только если из трех элементов множества \(B\) блокируется первая клетка второй строки, то есть хорошей тройкой является \((1, 1) - (2, 1) - (5, 6)\).
На второй карточке хорошими являются тройки: \((1, 2) - (3, 1) - (5, 6)\), \((2, 1) - (3, 1) - (5, 6)\), \((2, 1) - (3, 3) - (5, 1)\).
Тесты к этой задаче состоят из четырех групп
0. Тест 1. Тест из условия, оценивается в ноль баллов.
1. Тесты 2–18. В тестах этой группы \(N\) ≤ 100, \(Q\)total ≤ 1 000. Эта группа оценивается в 30 баллов. Баллы начисляются только при прохождении всех тестов группы.
2. Тесты 19–32. В тестах этой группы \(N\) ≤ 100, \(Q\)total ≤ 1 000 000. Эта группа оценивается в 30 баллов. Баллы начисляются только при прохождении всех тестов группы. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов из первой группы.
3. В тестах этой группы дополнительные ограничения отсутствуют, однако гарантируется, что \(N\) и \(Q\)total будут равномерно возрастать с номером теста. Эта группа оценивается в 40 баллов. Решение будет тестироваться на тестах этой группы offline, т. е. после окончания тура, причем только в случае прохождения всех тестов из первой и второй групп. Тесты в этой группе оцениваются независимо.
5 6 ..##.. ....#. .#.#.. .#...# ..#... 2 1 1 1 3 2 1 2 3 4 3 1 5 6 2 1 2 2 1 2 3 1 3 3 2 5 1 5 6
1 3
Вова и Марина любят играть в игры, а особенно — придумывать к ним свои правила. Недавно они открыли для себя веселую игру «Чапаев», в которой игроки должны сбивать щелчками шашки вражеского цвета с шахматной доски (также эта игра известна под названием «Щелкунчики»). Вдоволь наигравшись, они решили модифицировать правила, добавив игре математическую сложность.
Теперь они играют в «Чапаева» не на шахматной доске, а на доске в форме дерева! Их дерево состоит из \(N\) вершин. Вершина 1 является корнем дерева, а из каждой из оставшихся вершин проведено ребро в некоторую вершину с меньшим номером — ее непосредственного предка.
В игре участвуют шашки одного цвета, изначально расположенные в некоторых вершинах дерева. За один ход игрок выбирает некоторую шашку и щелчком отправляет ее к корню по ребрам дерева, сбивая при этом с доски все встреченные на пути шашки. Сама шашка, по которой производился удар, после попадания в корень дерева также слетает с доски.
Игроки делают ходы по очереди. Проигрывает тот игрок, к ходу которого на доске не остается шашек.
Придуманная ими игра замечательна также тем, что на одной и той же доске можно играть, начиная с разных начальных позиций шашек. Практика показала, что самые интересные партии получаются, если исходно расставить фишки во все вершины, являющиеся потомками (непосредственными или косвенными) некоторой вершины Root, при этом в саму вершину Root фишка не ставится.
Дети решили сыграть \(N\) партий, перебрав в качестве вершины Root каждую вершину дерева по одному разу. Если у очередной вершины Root нет потомков, и на доске исходно не оказывается ни одной фишки, то игры не происходит, и дети переходят к следующей расстановке. В каждой партии Марина ходит первой.
Вова интересуется у вас, в скольких партиях Марина сможет одержать победу, если игроки будут действовать оптимально.
В первой строке находится целое число \(N\) (1 ≤ \(N\) ≤ 500 000) — количество вершин в дереве.
Во второй строке следуют целые числа \(p_2\), \(p_3\), ..., \(p_N\), разделенные пробелами, где \(p_i\) — это номер вершины, являющейся предком вершины \(i\) (1 ≤ pi < i).
Выведите единственное целое число — количество партий, в которых Марина одержит победу.
Разберем тест из условия. Доска для игры показана на рисунках ниже. Дети сыграют четыре партии, выбирая в качестве Root вершины 1, 2, 3 и 5. Если выбрать в качестве Root любую из трех оставшихся вершин, на доске исходно не окажется ни одной фишки, поэтому игры не произойдет.
Если выбрать в качестве Root вершину 5, фишки будут исходно находиться в вершинах 6 и 7. В такой партии Марина проигрывает: после того, как она сбивает любую из этих двух фишек с доски, Вова сбивает оставшуюся и заканчивает партию.
Если выбрать в качестве Root вершину 2 или 3, у Марины будет возможность выиграть игру за один ход, щелкнув по фишке из вершины 4 (при этом, в случае Root = 2, она по пути также собьет фишку из 3 вершины по правилам игры)
Можно убедиться, что если выбрать в качестве Root вершину 1, у Марины также будет выигрышная стратегия. Для этого первым ходом Марина должна сбить фишку из вершины 2. Пример партии с таким начальным расположением показан ниже.
Таким образом, Марина выигрывает в трех партиях
Тесты к этой задаче состоят из пяти групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов предыдущих групп.
0. Тест 1. Тест из условия, оценивается в ноль баллов.
1. Тесты 2–17. В тестах этой группы \(N\) ≤ 20. Эта группа оценивается в 20 баллов
2. Тесты 18–38. В тестах этой группы \(N\) ≤ 200. Эта группа оценивается в 20 баллов.
3. Тесты 39–59. В тестах этой группы \(N\) ≤ 5 000. Эта группа оценивается в 20 баллов.
4. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 40 баллов.
7 1 2 3 1 5 5
3
Вера очень любит сочинять сказки. С детства она обладала очень богатой фантазией, ее работы были высоко оценены на многочисленных творческих конкурсах, а ее вырази- тельная речь способна невероятно точно передавать эмоции и чувства. Однако, Вера не смогла придумать красивую историю для следующей задачи по программированию:
Дан массив из целых чисел \(a_1\), \(a_2\), . . . , \(a_N\), каждый элемент которого по абсолютной величине не превосходит 2. Найдите такой непустой подотрезок \(a_l\), \(a_l\)+1, . . . , \(a_r\) этого массива (1 ≤ \(l\) ≤ \(r\) ≤ \(N\)), что произведение чисел \(a_l * a_{l+1} * ... * a_r\) является максимально возможным.
Вы, разумеется, можете посостязаться с Верой в креативности, однако мы рекомендуем вам заняться решением задачи.
В первой строке входных данных содержится число \(N (1 \le N \le 200 000)\) — число элементов массива. В следующей строке содержатся \(N\) целых чисел \(a_i\) — элементы массива \((|a_i| \le 2\)).
В единственной строке выходных данных выведите два числа \(l\) и \(r\) — искомые границы оптимального отрезка (1 ≤ \(l\) ≤ \(r\) ≤ \(N\)). В случае, если ответов несколько, выведите любой из них.
Тесты к этой задаче состоят из четырех групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов предыдущих групп
0. Тесты 1–3. Тесты из условия, оцениваются в ноль баллов.
1. Тесты 4–15. В тестах этой группы \(N \le 60\). Эта группа оценивается в 30 баллов
2. Тесты 15–31. В тестах этой группы \(N \le 2000\). Эта группа оценивается в 30 баллов.
3. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 40 баллов.
5 1 -1 2 2 1
3 5
3 -1 0 -2
2 2
7 -1 -2 -1 -2 1 2 -2
2 7