Темы --> Информатика --> Алгоритмы --> Динамическое программирование --> Динамическое программирование: один параметр
---> 9 задач <---
Страница: << 1 2 Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Заданы две последовательности чисел: объем продукции и процент брака. Требуется найти наибольшую подпоследовательность, в которой объем продукции растет, а процент брака падает.

Один из цехов завода производит продукцию в течение \(N\) месяцев. Начальнику цеха было поручено составить отчет о росте производительности данного цеха и об уменьшении доли некачественной продукции в процентном соотношении (точность доли процента до одного знака после запятой, например, 2/7=0.(285714) ≈ 28.6%). При этом в отчет должна войти информация как можно за большее число месяцев \(K\) (\(K\) ≤ \(N\)) работы цеха. Начальник цеха решил, что он включит в отчет данные только по тем месяцам (не обязательно взятым подряд, но обязательно в хронологическом порядке), по которым наблюдается строгий рост количества производимой продукции и строгий спад доли бракованных товаров по сравнению с данными предыдущего месяца, вошедшего в отчет. Определить, какое максимальное количество месяцев удовлетворяет этим условиям и сколько есть возможных вариантов составления отчета.

Входные данные

Первая строка файла содержит число \(N\) (1 ≤ \(N\) ≤ 40) - количество месяцев работы цеха. Далее следует N строк, содержащих целые числа \(v_i\) (1 ≤ \(v_i\) ≤ 10000) и \(b_i\) (1 ≤ \(b_i\) ≤ \(v_i\)); \(v_i\) - объем продукции, произведенной цехом за \(i\)-ый месяц; \(b_i\) - количество бракованной продукции в \(i\)-ом месяце.

Выходные данные

Первая строка файла содержит число \(K\) - количество месяцев, по которым будет включена в отчет информация о работе цеха. Вторая строка содержит число \(P\) - количество возможных вариантов составления отчета с максимальным содержанием.

Примеры
Входные данные
10
313 100
313 106
442 106
442 104
475 104
475 102
539 102
539 109
682 109
682 111
Выходные данные
5
32
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Завтра Петя уезжает в кругосветное путешествие, в процессе которого собирается посетить N разных городов. Вспомнив о старинной традиции бросать монетки в фонтаны для того, чтобы когда-нибудь вернуться в это место, он решил запастись монетами заранее. Поскольку это всего лишь традиция, подумал Петя, то с него хватит оставить в каждом городе по одной копеечной монете – зачем тратиться зря?

К сожалению, копеечные монеты – достаточно редкая вещь. В частности, таковых у Пети не нашлось. Купюр и монет всех остальных достоинств у него с избытком.

С этими мыслями Петя решил прогуляться до продуктового магазина – купить в дорогу немного еды. Из всего ассортимента ему подходило M видов товара (количество товаров каждого вида неограниченно), стоимость i-го равна ai рублей bi копеек. И тут его осенило. Если покупать товары в правильной последовательности, то он довольно быстро сможет скопить так нужные ему N копеечных монет!

Процесс покупки в магазине устроен следующим образом. Петя может заказать любой набор из подходящих ему товаров (каждого товара Петя может взять сколько угодно единиц). После чего он платит за них и получает сдачу минимальным числом купюр и монет (любых монет и купюр в кассе также с избытком). Это означает, например, что если ему должны сдать 11 рублей и 98 копеек сдачи, то он получит купюру в 10 рублей, монеты в 1 рубль, 50 копеек, 4 монеты в 10 копеек, одну монету в 5 копеек и три копеечных монеты. При этом он волен вносить любую сумму (лишь бы она была не меньше требуемой для оплаты) и платить любым набором купюр и монет, имеющихся у него в распоряжении.

После этого Петя может ещё раз подойти к кассе, сделать заказ, расплатиться имеющимися наличными (можно использовать и полученные до этого со сдачей) и так далее сколько угодно раз.

Петя хочет потратить в этом магазине как можно меньше денег. Помогите ему найти оптимальный способ обретения не менее N копеечных монет с минимальными затратами.

Комментарий для нероссийских участников олимпиады.

В России используются монеты и купюры достоинством 1, 5, 10, 50 копеек и 1, 2, 5, 10, 50, 100, 500, 1000 и 5000 рублей. 1 рубль равен 100 копейкам.

Входные данные

Сначала вводятся целые числа N и M (0 ≤ N ≤ 108, 0 ≤ M ≤ 100) — количество городов, которые собирается посетить Петя, и количество подходящих ему видов товара. Далее идут M пар чисел ai, bi, обозначающих стоимость товара соответствующего типа (0 ≤ ai ≤ 100, 0 ≤ bi ≤ 99). Стоимость товара всегда больше нуля.

Выходные данные

Если требуемое количество копеечных монет получить невозможно, выведите –1. Иначе выведите минимальную сумму, которую должен потратить Петя на покупку товаров, чтобы получить N однокопеечных монет.  Сумма должна быть выведена как два целых числа, задающих рубли и копейки (второе число обязано быть от 0 до 99).

Система оценки

Примеры
Входные данные
3 1
0 2
Выходные данные
0 2
Входные данные
4 2
1 2
0 4
Выходные данные
0 16
Входные данные
1 3
0 1
0 4
0 6
Выходные данные
0 1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Группа школьников решила сходить в поход вдоль Москвы-реки. У Москвы-реки существует множество притоков, которые могут впадать в нее как с правого, так и с левого берега.

Школьники хотят начать поход в некоторой точке на левом берегу и закончить поход в некоторой точке на правом берегу, возможно, переправляясь через реки несколько раз. Как известно, переправа как через реку, так и через приток представляет собой определенную сложность, поэтому они хотят минимизировать число совершенных переправ.

Школьники заранее изучили карту и записали, в какой последовательности в Москву-реку впадают притоки на всем их маршруте.

Помогите школьникам по данному описанию притоков определить минимальное количество переправ, которое им придется совершить во время похода.

Входные данные

Единственная строка содержит описание Москвы-реки между начальной и конечной точкой похода. Длина строки не превосходит \(10^5\) символов.

Каждый символ строки может быть одной из трех латинских букв L, R или B. Буква L означает, что очередной приток впадает в реку с левого берега, R - приток впадает в реку с правого берега и B - притоки впадают с обоих берегов реки в одном месте. Поход начинается на левом берегу перед описанной частью реки и заканчивается на правом берегу после описанной части.

Выходные данные

Выведите одно целое число - минимальное количество переправ.

Примечания

Рисунок к приведенному выше примеру.

Примеры
Входные данные
LLBLRRBRL
Выходные данные
5
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

В одном известном всем городе скоро стартуют Зимние Олимпийские игры. В связи с этим организаторы игр решили провести эстафету Олимпийского огня — самую продолжительную и масштабную в истории Олимпийских игр. Эстафета состоит из N этапов, каждый длиной ai километров (1 ≤ i ≤ N). У организаторов имеется бесконечное количество олимпийских факелов, каждый из которых может непрерывно гореть на протяжении K километров забега. По правилам эстафеты каждый факел используется только один раз. В начале каждого этапа участникам эстафеты выдаётся некоторое число факелов, такое, чтобы олимпийский огонь удалось донести до конца этапа. По окончании этапа все использованные (полностью или частично) факелы передаются в дар своим факелоносцам.

В процессе подготовки эстафеты выяснилось, что последовательно идущие этапы можно объединить в один этап, и таким образом на проведение эстафеты потребуется меньше факелов. Однако по соображениям техники безопасности нельзя объединять больше, чем M подряд идущих этапов.

Напишите программу, которая по известной схеме эстафеты Олимпийского огня определяет, какое максимальное число факелов можно «сэкономить» и какие этапы для этого нужно объединить.

Входные данные

В первой строке заданы 3 натуральных числа N, M и K (N ≤ 106, M ≤ 10, K ≤ 108).

Во второй строке заданы N натуральных чисел ai (ai ≤ 109).

Выходные данные

В первой строке выведите одно натуральное число F — на сколько можно максимально сократить количество используемых факелов на протяжении всей эстафеты.

Во второй строке выведите одно натуральное число P — количество групп объединённых этапов.

Затем в P строках выведите сами группы — по 2 натуральных числа si и ci, где si — номер первого этапа в группе, а ci — количество этапов в группе. Все si должны идти в порядке возрастания, а ci не превосходить M. Если существует несколько оптимальных решений, разрешается вывести любое.

Примеры тестов

Входные данные
5 3 3
1 1 1 3 3
Выходные данные
2
1
1 3
Входные данные
6 3 3
1 1 1 1 1 1
Выходные данные
4
2
1 3
4 3
Входные данные
5 5 2
2 4 6 8 10
Выходные данные
0
0


Страница: << 1 2 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест