Темы --> Информатика --> Алгоритмы --> Динамическое программирование --> Динамическое программирование: один параметр
---> 4 задач <---
Источники --> Личные олимпиады --> Всероссийская олимпиада школьников
    Муниципальный этап(80 задач)
    Окружная олимпиада(18 задач)
    Региональный этап(109 задач)
    Заключительный этап(97 задач)
Страница: 1 Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Профиль Уральских гор задается ломаной (x1, y1), (x2, y2), …, (xN, yN), для координат вершин которой верны неравенства x1 < x2 < … < xN. Начальные и конечные точки профиля расположены на уровне моря (y1 = yN = 0).

На горном профиле заданы две различные точки A и B, между которыми требуется проложить дорогу. Эта дорога будет проходить по склонам гор и проектируемому горизонтальному мосту, длина которого не должна превышать L. Оба конца моста находятся на горном профиле. Дорога заходит на мост с одного конца и выходит с другого. Мост не может содержать точек, расположенных строго под ломаной (строительство тоннелей не предполагается).

Возможные примеры расположения моста

1

Невозможное расположение моста

2

Достоверно известно, что строительство такого моста в данной местности возможно, причем позволит сократить длину дороги из точки A в точку B. Требуется написать программу, которая определит такое расположение горизонтального моста, что длина дороги от точки A до точки B будет наименьшей.

Входные данные

Первая строка входных данных содержит два целых числа N и L — количество вершин ломаной (2 ≤ N ≤ 100 000) и максимальную длину моста (1 ≤ L ≤ 106) соответственно. Вторая строка  содержит координаты точки A, третья строка — координаты точки B. Точки A и B различны.

Последующие N строк содержат координаты вершин ломаной (x1, y1), (x2, y2), …, (xN, yN). Координаты вершин ломаной, а также точек A и B, задаются парой целых чисел, не превосходящих по абсолютному значению 106. Гарантируется, что x1 < x2 < … < xN и y1 = yN = 0, а также, что точки A и B принадлежат ломаной.

Выходные данные

В первой и второй строках выходных данных выведите координаты концов моста с точностью не менее 5 знаков после десятичной точки. В случае, когда решений несколько, выведите любое из них.

В примере в первой строке указана длина дороги от точки A до точки B с учётом построенного моста. Её не нужно выводить.

Примечание

Решения, корректно работающие при N ≤ 2000, будут оцениваться, исходя из 80 баллов.

Примеры
Входные данные
5 3
1 1
3 1
-1 0
0 2
2 0
4 2
5 0
Выходные данные
2.000000000
1.00000 1.00000
3.00000 1.00000

В школу бальных танцев профессора Падеграса записались n учеников — мальчиков и девочек. Профессор построил их в один ряд, и хочет отобрать из них для первого занятия группу стоящих подряд учеников, в которой количество мальчиков и девочек одинаково. Сколько вариантов выбора есть у профессора?

Входные данные

В первой строке задано число n (1 ≤ n ≤ 106). Во второй строке задается описание построенного ряда из мальчиков и девочек — строка из n символов a и b (символ a соответствует девочке, а символ b — мальчику).

Выходные данные

В единственной строке должно содержаться единственное число — количество вариантов выбора требуемой группы.

Система оценки

Тесты в этой задаче разбиты на группы. Баллы начисляются только за группу целиком в том случае, когда пройдены все тесты группы, а также все тесты предыдущих групп.

  1. Тест 1. Тест из условия, оценивается в 0 баллов.
  2. Тесты 2–8. \(N \le 101\), оцениваются в 30 баллов.
  3. Тесты 9–14. \(N \le 6\,000\), оцениваются в 30 баллов.
  4. Тесты 15–20. Дополнительных ограничений нет, оцениваются в 40 баллов.

Примеры
Входные данные
8
aabbaabb
Выходные данные
10
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Заданы две последовательности чисел: объем продукции и процент брака. Требуется найти наибольшую подпоследовательность, в которой объем продукции растет, а процент брака падает.

Один из цехов завода производит продукцию в течение \(N\) месяцев. Начальнику цеха было поручено составить отчет о росте производительности данного цеха и об уменьшении доли некачественной продукции в процентном соотношении (точность доли процента до одного знака после запятой, например, 2/7=0.(285714) ≈ 28.6%). При этом в отчет должна войти информация как можно за большее число месяцев \(K\) (\(K\) ≤ \(N\)) работы цеха. Начальник цеха решил, что он включит в отчет данные только по тем месяцам (не обязательно взятым подряд, но обязательно в хронологическом порядке), по которым наблюдается строгий рост количества производимой продукции и строгий спад доли бракованных товаров по сравнению с данными предыдущего месяца, вошедшего в отчет. Определить, какое максимальное количество месяцев удовлетворяет этим условиям и сколько есть возможных вариантов составления отчета.

Входные данные

Первая строка файла содержит число \(N\) (1 ≤ \(N\) ≤ 40) - количество месяцев работы цеха. Далее следует N строк, содержащих целые числа \(v_i\) (1 ≤ \(v_i\) ≤ 10000) и \(b_i\) (1 ≤ \(b_i\) ≤ \(v_i\)); \(v_i\) - объем продукции, произведенной цехом за \(i\)-ый месяц; \(b_i\) - количество бракованной продукции в \(i\)-ом месяце.

Выходные данные

Первая строка файла содержит число \(K\) - количество месяцев, по которым будет включена в отчет информация о работе цеха. Вторая строка содержит число \(P\) - количество возможных вариантов составления отчета с максимальным содержанием.

Примеры
Входные данные
10
313 100
313 106
442 106
442 104
475 104
475 102
539 102
539 109
682 109
682 111
Выходные данные
5
32
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

В одном известном всем городе скоро стартуют Зимние Олимпийские игры. В связи с этим организаторы игр решили провести эстафету Олимпийского огня — самую продолжительную и масштабную в истории Олимпийских игр. Эстафета состоит из N этапов, каждый длиной ai километров (1 ≤ i ≤ N). У организаторов имеется бесконечное количество олимпийских факелов, каждый из которых может непрерывно гореть на протяжении K километров забега. По правилам эстафеты каждый факел используется только один раз. В начале каждого этапа участникам эстафеты выдаётся некоторое число факелов, такое, чтобы олимпийский огонь удалось донести до конца этапа. По окончании этапа все использованные (полностью или частично) факелы передаются в дар своим факелоносцам.

В процессе подготовки эстафеты выяснилось, что последовательно идущие этапы можно объединить в один этап, и таким образом на проведение эстафеты потребуется меньше факелов. Однако по соображениям техники безопасности нельзя объединять больше, чем M подряд идущих этапов.

Напишите программу, которая по известной схеме эстафеты Олимпийского огня определяет, какое максимальное число факелов можно «сэкономить» и какие этапы для этого нужно объединить.

Входные данные

В первой строке заданы 3 натуральных числа N, M и K (N ≤ 106, M ≤ 10, K ≤ 108).

Во второй строке заданы N натуральных чисел ai (ai ≤ 109).

Выходные данные

В первой строке выведите одно натуральное число F — на сколько можно максимально сократить количество используемых факелов на протяжении всей эстафеты.

Во второй строке выведите одно натуральное число P — количество групп объединённых этапов.

Затем в P строках выведите сами группы — по 2 натуральных числа si и ci, где si — номер первого этапа в группе, а ci — количество этапов в группе. Все si должны идти в порядке возрастания, а ci не превосходить M. Если существует несколько оптимальных решений, разрешается вывести любое.

Примеры тестов

Входные данные
5 3 3
1 1 1 3 3
Выходные данные
2
1
1 3
Входные данные
6 3 3
1 1 1 1 1 1
Выходные данные
4
2
1 3
4 3
Входные данные
5 5 2
2 4 6 8 10
Выходные данные
0
0


Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест