Темы --> Информатика --> Алгоритмы --> Вычислительная геометрия
---> 55 задач <---
Страница: << 4 5 6 7 8 9 10 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

С незапамятных времен граница страны Флатландия имеет форму N-угольника без самопересечений и самокасаний (необязательно выпуклого). В каждой из вершин этого многоугольника король построил по башне.

В целях увеличения обороноспособности государства на его территории король задумал построить Великий Флатландский Забор. По причине многолетней войны ресурсов хватает на строительство ровно K стен (неважно, какой длины). Каждая стена должна соединять ровно две башни по прямой и не должна даже частично выходить за пределы Флатландии. К тому же, Забор должен представлять собой не более чем K-угольник также без самопересечений и самокасаний (углов может оказаться и меньше, чем K, так как некоторые соседние стены могут лежать на одной прямой). Военный советник настаивает на том, что площадь защищенной области должна быть как можно больше.

Ваша задача — помочь спроектировать такой Забор.

Входные данные

В первой строке записаны два целых числа N и K (3 ≤ KN230). В следующих N строках содержатся пары целых чисел — координаты башен в порядке обхода границы против часовой стрелки. Гарантируется, что никакие три последовательные башни не лежат на одной прямой. Все координаты не превосходят 1000 по абсолютной величине.

Выходные данные

В первую строку запишите максимальную площадь, которую можно защитить Забором, с точностью до пяти знаков после десятичной точки. Во второй строке должно быть Q — количество выбранных башен.

Будем считать, что башни занумерованы числами от 1 до N в порядке перечисления их во входном файле. Во третью строку через пробел выведите номера Q башен, которые будут вершинами Забора, в порядке его обхода против часовой стрелки.

Частичные ограничения

Первая группа состоит из тестов, в которых N ≤ 20 и граница Флатландии представляет собой выпуклый многоугольник.

Вторая группа состоит из тестов, в которых N ≤ 20, но граница может быть уже любой.

Примеры
Входные данные
3 3
0 0
1 0
0 1
Выходные данные
0.50000
3
1 2 3 
Входные данные
6 5
0 0
7 0
4 3
4 4
3 4
0 7
Выходные данные
24.50000
5
1 2 3 5 6 
Входные данные
4 3
0 0
1 3
0 2
-2 -2
Выходные данные
2.00000
3
1 3 4 
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

На плоскости заданы N разных окружностей. Две окружности пересекаются, если они имеют хотя бы одну общую точку.

Напишите программу, которая по координатам центров окружностей и их радиусам найдет пару пересекающихся окружностей.

Входные данные

В первой строке входного файла содержится целое числоN (1≤N≤10 000) . В каждой из последующих N строк содержатся три натуральных числа X, Y, R меньших 10 000, которые задают координаты центра окружности (X, Y) и его радиус R.

Выходные данные

Единственная строка выходного файла должна содержать пару номеров пересекающихся окружностей, либо единственное число 0, если никакие две окружности не пересекаются. Окружности нумеруются соответственно порядку во входном файле, начиная с 1 до N. Если существует несколько пар пересекающиеся окружностей, выведите любую из них. Элементы пары могут быть выведены в произвольном порядке.

Примеры
Входные данные
5
5 10 4
6 20 3
10 15 3
12 8 2
13 13 1
Выходные данные
5 3
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

На плоскости задано N (1 ≤ N ≤ 30) супермногоугольников (без пересечений и самопересечений). Каждый супермногоугольник задаётся координатами своих Ki (3 ≤ Ki ≤ 30, 1 ≤ iN) вершин в порядке обхода против часовой стрелки. Все координаты — целые числа из диапазона -32000..32000. Требуется соединить супермногоугольники М отрезками так, чтобы:

  1. Oтрезок соединяет только пару супермногоугольников.

  2. Суммарная длина отрезков была минимальна.

  3. Между любыми двумя супермногоугольниками должен существовать путь (последовательность некоторых отрезков и частей границ супермногоугольников).

Формат входных данных

В первой строке число N. В следующих N строках. Число Ki и Ki пар чисел – координаты вершин.

Формат выходных данных

В первой строке число М и сумма длин найденных отрезков с точностью 10-3. В следующих М строках числа L1 X1 Y1 L2 X2 Y2 – номера супермногоугольников и координаты концов отрезков с точностью 10-3.

Примеры

Входные данные

Выходные данные

2

3 1 0 2 0 1 1

4 6 5 7 5 7 6 6 6

1 6.364

1 1.500 0.500 2 6.000 5.000

3

3 0 0 1 0 0 1

4 5 5 6 5 6 6 5 6

3 0 5 1 6 0 6

2 8.000

3 1.000 6.000 2 5.000 6.000

1 0.000 1.000 3 0.000 5.000

ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Есть прямоугольный стол для игры в бильярд размером \(N\)x\(M\). Стол расположен в системе координат так, что его углы находятся в точках с координатами (0,0), (\(N\),0), (\(N\),\(M\)), (\(M\),0).

На столе лежат черный и белый шары. Игрок ударяет по черному шару, задавая ударом направление его движения. Шар летит в заданном направлении, отскакивая от стенок стола по закону отражения. Когда черный шар ударяет по белому шару, то черный шар останавливается, а белый начинает двигаться в том направлении, куда летел в момент удара черный. После этого белому шару запрещается ударять черный шар.

Задача игрока — загнать белый шар в одну из луз, расположенных в углах стола. При этом до попадания в лузу черный и белый шары должны удариться о стенки стола суммарно как можно меньше раз, но не более \(K\) раз.

Входные данные

Сначала вводятся размеры стола \(N\) и \(M\) (3≤\(N\)≤1000, 3≤\(M\)≤1000). Далее записано число K (0≤K≤200). Затем записано две пары чисел \(X_1\), \(Y_1\), \(X_2\), \(Y_2\) – начальные координаты черного шара и начальные координаты белого шара (1≤\(X_1\)≤\(N\)–1, 1≤\(Y_1\)≤\(M\)–1, 1≤\(X_2\)≤\(N\)–1, 1≤\(Y_2\)≤\(M\)–1). Гарантируется, что начальные положения шаров не совпадают, и изначально шары находятся строго внутри стола.

Все числа целые.

Выходные данные

Выведите минимальное суммарное количество ударов черного и белого шаров о стенки стола до попадания белого шара в лузу. Если попасть белым шаром в лузу, сделав не более K ударов, невозможно, выведите –1 (минус один).

Примеры
Входные данные
4 4
3
2 1
2 3
Выходные данные
1
Входные данные
4 4
200
1 1
1 3
Выходные данные
-1
Входные данные
5 4
3
4 1
4 3
Выходные данные
3
Входные данные
5 4
0
3 2
4 3
Выходные данные
0
ограничение по времени на тест
4.0 second;
ограничение по памяти на тест
64 megabytes

К 2110 году город Флэтбург, являясь одним из крупнейших городов мира, не имеет обходной автомагистрали, что является существенным препятствием для его развития как крупнейшего транспортного центра мирового значения. В связи с этим ещё в 2065 году при разработке Генерального плана развития Флэтбурга была определена необходимость строительства кольцевой автомобильной дороги.

В Генеральном плане также были обозначены требования к этой дороге. Она должна соответствовать статусу кольцевой — иметь форму окружности. Кроме этого, четыре крупные достопримечательности Флэтбурга должны быть в одинаковой транспортной доступности от дороги. Это предполагается обеспечить тем, что они будут находиться на равном расстоянии от неё. Расстоянием от точки расположения достопримечательности до дороги называется наименьшее из расстояний от этой точки до некоторой точки, принадлежащей окружности автодороги.

Дирекция по строительству города Флэтбурга, ответственная за постройку кольцевой автодороги, решила привлечь передовых программистов для выбора оптимального плана постройки дороги.

Требуется написать программу, которая вычислит число возможных планов постройки кольцевой автомобильной дороги с соблюдением указанных требований и найдёт такой план, для которого длина дороги будет минимальной. Гарантируется, что хотя бы один план постройки существует.

Входные данные

Входной файл содержит четыре строки. Каждая из них содержит по два целых числа: \(x_i\) и \(y_i\) — координаты места расположения достопримечательности. Первая строка описывает первую достопримечательность, вторая — вторую, третья — третью, четвёртая — четвёртую. Никакие две достопримечательности не находятся в одной точке.

Все числа во входном файле не превосходят 100 по абсолютной величине.

Выходные данные

В первой строке выходного файла требуется вывести число возможных планов постройки кольцевой автомобильной дороги. Если таких планов бесконечно много, необходимо вывести в первой строке выходного файла слово Infinity.

На второй строке требуется вывести координаты центра дороги минимальной длины и её радиус. Если существует несколько разных способов построения дороги минимальной длины, необходимо вывести координаты центра и радиус любой из них. Координаты центра и радиус должны быть выведены с точностью не хуже \(10^{-5}\) и не должны превышать \(10^9\). Гарантируется, что существует хотя бы один план с такими параметрами.

Примеры
Входные данные
0 0
0 1
1 0
2 2
Выходные данные
7
1.5 0.5 1.14412281
Входные данные
0 0
0 1
1 0
1 1
Выходные данные
Infinity
0.5 0.5 0.0

Страница: << 4 5 6 7 8 9 10 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест