Темы --> Информатика --> Структуры данных --> Система непересекающихся множеств
---> 4 задач <---
Страница: 1 Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Фермер Архип решил заняться земледелием и выращивать брюссельскую редиску. Для этого он купил прямоугольное поле, состоящее из \(n\) рядов по \(m\) участков в каждом. Все участки являются одинаковыми и имеют квадратную форму. Оказалось, что на момент покупки некоторые из этих участков уже удобрены, а некоторые — нет. Редиска растет только на удобренных участках.

Для получения большего урожая Архип решил удобрить некоторый прямоугольный фрагмент поля, состоящий из целых участков. В выбранном фрагменте Архип удобряет каждый участок. Повторное удобрение участка делает его непригодным к выращиванию брюссельской редиски. Закончив удобрять, фермер выбирает для посадки редиски прямоугольный фрагмент поля, состоящий из целых участков, каждый из которых удобрен ровно один раз.

Архип должен выбрать на поле фрагмент для удобрения таким образом, чтобы фрагмент для посадки редиски имел максимальную площадь.

Напишите программу, которая по заданному полю находит фрагмент поля для удобрения и фрагмент поля под посадку.

Входные данные

В первой строке входного файла записаны натуральные числа \(n\) и \(m\) (\(2\le n\le2\,000\), \(2\le m\le2\,000\)), где \(n\) — количество рядов на поле, а \(m\) — количество участков в каждом ряду (количество столбцов). Далее в \(n\) строках содержится описание поля. Каждая из этих \(n\) строк содержит \(m\) символов. Символ «1» обозначает, что соответствующий участок поля удобрен, а «0» — не удобрен. Гарантируется, что поле содержит хотя бы один удобренный и хотя бы один неудобренный участок. Поле расположено таким образом, что первая строка его описания соответствует северной стороне, а первый столбец — западной стороне.

Выходные данные

Первая строка должна описывать фрагмент поля для удобрения. Фрагмент описывается четырьмя числами \(a\), \(b\), \(c\), \(d\), где \(a\) и \(b\) — номер ряда и столбца самого северо-западного его участка, а \(c\) и \(d\) — номер ряда и столбца самого юго-восточного. Ряды нумеруются с севера на юг от 1 до \(n\), а столбцы — с запада на восток от 1 до \(m\).

Вторая строка должна описывать фрагмент под посадку в том же формате.

Третья строка должна содержать площадь фрагмента (количество участков) под посадку.

Если решений несколько, выведите любое.

Система оценивания

Решения, корректно работающие при \(n\le40\) и \(m\le40\), будут оцениваться из 30 баллов, а решения, корректно работающие при \(n\le300\) и \(m\le300\), будут оцениваться из 60 баллов.

Примеры
Входные данные
4 4
1110
1010
1110
0000
Выходные данные
2 2 2 2
1 1 3 3
9
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
128 megabytes

Компания тестирует технологию получения антивещества, используемого в качестве топлива в межпланетном звездолёте. Антивещество получается в результате специальных экспериментов в реакторе.

Известно n типов экспериментов, приводящих к получению антивещества. В результате проведения эксперимента i-го типа в выходной контейнер реактора добавляется от li до ri граммов антивещества. Из соображений безопасности запрещается накапливать в контейнере более a граммов антивещества.

Затраты на проведение эксперимента i-го типа составляют ci, а стоимость одного грамма полученного антивещества составляет 109.

Если после проведения экспериментов в контейнере образовалось t граммов антивещества, а суммарные затраты на проведение экспериментов в реакторе составили s, то прибыль определяется по формуле (t·109 - s). Компании необходимо разработать стратегию проведения экспериментов, позволяющую максимизировать прибыль, которую можно гарантированно получить.

В зависимости от результатов предыдущих экспериментов стратегия определяет, эксперимент какого типа следует провести, или решает прекратить дальнейшее выполнение экспериментов. Стратегия позволяет гарантированно получить прибыль x, если при любых результатах проведения экспериментов: во-первых, в контейнере реактора оказывается не более a граммов антивещества, во-вторых, прибыль составит не менее x.

Например, пусть возможен только один тип эксперимента, порождающий от 4 до 6 граммов антивещества, затраты на его проведение равны 10, а вместимость контейнера составляет 17 граммов. Тогда после двукратного проведения эксперимента в контейнере может оказаться от 8 до 12 граммов антивещества. Если получилось 12 граммов, то больше проводить эксперимент нельзя, так как в случае получения 6 граммов антивещества контейнер может переполниться. В остальных случаях можно провести эксперимент в третий раз и получить от 12 до 17 граммов антивещества. В худшем случае придётся провести эксперимент трижды, затратив в сумме 30, прибыль составит (12·109 - 30) = 11 999 999 970.

Требуется написать программу, которая определяет максимальную прибыль x, которую гарантированно можно получить.

Входные данные

Первая строка входных данных содержит два целых числа: n — количество типов экспериментов и a — максимально допустимое количество антивещества в контейнере (1 ≤ n ≤ 100, 1 ≤ a ≤ 2 000 000).

Следующие n строк содержат по три целых числа li, ri и ci — минимальное и максимальное количество антивещества, получаемое в результате эксперимента типа i, и затраты на эксперимент этого типа, соответственно (1 ≤ li ≤ ri ≤ a, 1 ≤ ci ≤ 100).

Выходные данные

Выходные данные должны содержать одно целое число — максимальную прибыль x, которую гарантированно можно получить.

Примеры
Входные данные
1 17
4 6 10
Выходные данные
11999999970
Входные данные
2 11
2 2 100
3 5 5
Выходные данные
9999999890
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В далекой стране есть N городов. Был избран новый премьер-министр. В настоящее время в этой стране нет ни одной дороги, поэтому премьер-министр решил модернизировать страну, соединив некоторые города с двусторонними автострадами в транспортные сети. Два города будут расположены в одной и той же сети, если можно добраться до одного города от другого, используя недавно построенные дороги. Каждый город будет расположен в какой-то сети. Каждая сеть состоит из одного или нескольких городов.

Города представлены в виде точек в двумерной системе координат. Дорога между двумя городами представлена ​​в виде отрезка, соединяющего две точки, в которых расположены города. Длина дороги равна длине отрезка в километрах.

В настоящее время страна переживает экономический спад, поэтому премьер-министр решил, что из-за отсутствия бюджета они не будут строить дороги длиннее, чем D километров. Кроме того, премьер-министр радуется мелочам, поэтому он будет счастлив, если по крайней мере в одной сети будет существовать непустое подмножество городов (оно может включать все города в сети), где общая сумма жителей делится на К . Например, если K = 4 и есть сеть с городами, в которых есть 3 , 5 , 7 жителей соответственно, премьер-министр будет счастлив, потому что сумма жителей в первых двух городах равна 8 .

Помогите премьер-министру сократить расходы, определив минимальный уровень D , необходимый для того чтобы премьер-министр мог строить дороги и одновременно быть счастливым.

Входные данные

Первая строка ввода содержит целые числа N и K (1 ≤ N ≤ 50000, 1 ≤ K ≤ 30) . Каждая из следующих N строк содержит три целых числа x i ; y i ; k i (0 ≤ x i , y i , k i ≤ 100000000) , которые представляют координату x города, координату y и количество жителей в этом городе, соответственно. На входных данных не будет двух городов с одинаковыми координатами. Кроме того, не будет ни одного города, в котором число жителей делится на К .

Выходные данные

Первая и единственная строка вывода должна содержать минимальную D с точностью до 3 -х знаков после запятой, такую, что можно строить дороги с условием, что премьер-министр будет счастлив. Входные данные будут такими, чтобы всегда было решение.

Примечание

Объяснение первого примера: единственный способ удержать премьер-министра в счастливом настроение - все города должны находятся в одном округе. Минимальный D , для которого это возможно, равен 1.414 .

Объяснение второго примера: премьер-министр будет рад, если первые 5 городов находятся в одном округе. Если D = 5.657 , премьер-министр может соединить города 1, 2, 3, 5 с городом 4 . В этом случае сумма жителей в городах 1, 2, 3, 4, 5 составит 11 , что делится на 11 , Поэтому премьер-министр будет счастлив.

Примеры
Входные данные
3 3
0 4 4
1 5 1
2 6 1
Выходные данные
1.414
Входные данные
6 11
0 0 1
0 1 2
1 0 3
1 1 4
5 5 1
20 20 10
Выходные данные
5.657
Входные данные
6 5
20 20 9
0 0 3
0 1 1
10 0 1
10 1 6
12 0 3
Выходные данные
2.000
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Давным-давно в одной далекой-далекой галактике, было N планет. Также было N - 1 межпланетных магистралей, соединявших между собой все планеты (не обязательно напрямую). Иными словами, сеть планет и магистралей образовывала дерево. Кроме того, каждая магистраль имеет свой показатель интересности, заданный неотрицательным целым числом. Пара планет ( A , B ) называется скучной, если выполняются следующие условия:

1. A и B - различные планеты.

2. В действующей сети межпланетных магистралей существует путь между A и B .

3. Побитовый XOR показателей интересности всех магистралей в этом пути равен 0.

Ныне в галактике правит злой император, и он планирует использовать Силу, чтобы уничтожить все межпланетные магистрали в определенном порядке. Для того, чтобы спасти вселенную от гибели, вам необходимо определить количество пар скучных планет и после каждого разрушения вновь подсчитывать эту величину.

Входные данные

Первая строка содержит одно целое число N ( 1 ≤ N ≤ 100000 ). Каждая из следующих N - 1 строк содержит три целых числа A i , B i , Z i ( 1 ≤ A i , B i ≤ 100000 , 0 ≤ Z i ≤ 1000000000 ), которые означают, что планеты с номерами A i и B i соединены магистралью с показателем интересности Z i . Последняя строка содержит N - 1 число: перестановку натуральных чисел от 1 до N - 1 , отражающую порядок уничтожения магистралей (если i -е число в строке равно j , то император уничтожит дорогу между планетами A j и B j на i -м шаге).

Выходные данные

Выведите N строк, в k -й строке выведите одно число - количество пар скучных планет после уничтожения k - 1 дорог.

Примечание

Решения, работающие при N ≤ 1000 , будут оцениваться в 20 баллов. Решения, работающие в случае когда показатель интересности всех путей равен 0, будут оцениваться не менее чем в 30 баллов.

Примеры
Входные данные
2
1 2 0
1
Выходные данные
1
0
Входные данные
3
1 2 4
2 3 4
1 2
Выходные данные
1
0
0
Входные данные
4
1 2 0
2 3 0
2 4 0
3 1 2
Выходные данные
6
3
1
0

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест