---> 13 задач <---
Страница: << 1 2 3 Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

При написании программы, проверяющей ответ участника для задачи 3204 "Отрезки на прямой возвращаются" (ссылка на задачу) (прочитайте её условие!), жюри столкнулось с трудностями, превосходящими сложность самой задачи. С мыслью "почему бы и нет" написание такой программы было решено также включить в комплект задач.

Проверяющей программе доступно три блока информации:

  • входные данные в формате, описанном в условии предыдущей задачи,
  • ответ некоторого абстрактного участника в формате, также описанном в предыдущем условии,
  • ответ жюри.

Ваша задача - написать программу, которая по этим данным определит, правильно ли программа абстрактного участника посчитала ответ.

Входные данные

Вход состоит из трёх частей. Первая часть - число \(N\) (\(1 \le N \le 100\,000\)) и следом \(N\) пар \(a_i\), \(b_i\) (\(-10^9 \le a_i \lt b_i \le 10^9\)). Далее идут \(N\) чисел, каждое из которых от 0 до \(N\), \(i\)-е равно номеру отрезка, являющегося одним из непосредственно содержащих \(i\)-й, либо нулю - по мнению абстрактного участника. Далее идут ещё \(N\) чисел в том же формате - ответ жюри на эту задачу.

Входные данные всегда корректны. Это означает, например, что ответ участника не нужно проверять на соответствие формату и что ответ жюри точно правильный.

Выходные данные

Выведите \(N\) строк. В \(i\)-й строке должен быть вердикт для \(i\)-го отрезка. Выведите OK, если ответ абстрактного участника правильный, и WA - иначе.

Примечания

Тесты состоят из четырёх групп.

  1. Тест 1, из условия, оценивается в 0 баллов.
  2. Тесты 2--11. В них \(N \le 100\). Группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы.
  3. Тесты 12--27. В них \(N \le 10\,000\). Группа оценивается в 30 баллов, баллы начисляются только при прохождении всех тестов группы.
  4. Тесты 28--35. Полные ограничения. Каждый тест оценивается в 5 баллов (тесты оцениваются независимо друг от друга). При этом баллы за тесты этой группы ставятся только тогда, когда программа проходит все тесты групп 1 и 2. Если программа не проходит хотя бы один из тестов групп 1 и 2, то баллы за тесты группы 3 не ставятся.
Примеры
Входные данные
4
2 3
0 4
1 6
0 5
2 2 1 0
3 4 0 0
Выходные данные
OK
WA
WA
OK
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
512 megabytes
Дано изображение дерева из \(n\) вершин на прямоугольной сетке. Каждое ребро — либо вертикальный, либо горизонтальный отрезок длины \(1\) Дано \(q\) запросов, каждый имеет вид "сколько компонент связности образуется при вырезании данного прямоугольного фрагмента"

Со стародавних времён в поморских деревнях рукодельницы вышивали жемчугом на прямоугольных полотенцах, состоящих из одинаковых клеток. Вышивка начиналась с пришивания жемчужины к полотенцу в центре одной из клеток. Чтобы пришить новую жемчужину, рукодельница делала стежок из клетки, уже содержащей жемчужину, в соседнюю с ней по горизонтали или вертикали свободную клетку. Новая жемчужина пришивалась в центре клетки на конце стежка. Этот процесс повторялся, пока не заканчивались жемчужины.

Одно из таких праздничных полотенец находится в музее. К сожалению, некоторые части узора были утеряны, но описание полотенца сохранилось. Дирекция музея планирует восстановить один из прямоугольных фрагментов полотенца, но не ещё не решила какой именно. Затраты на восстановление фрагмента зависят от количества связных частей узора, попавших на этот фрагмент. Часть узора считается связной, если от любой её жемчужины можно по стежкам перейти к любой другой её жемчужине, не выходя за границы фрагмента. Дирекция всегда относит любые две жемчужины, между которыми можно перейти по стежкам, к одной и той же связной части узора.

Требуется написать программу, вычисляющую количество связных частей узора для каждого из заданных фрагментов.

Входные данные

Первая строка входных данных содержит два целых числа a и b — размеры полотенца в клетках по горизонтали и вертикали.

Вторая строка содержит два числа \(n\) и \(q\) — количество жемчужин в узоре и количество фрагментов соответственно.

Следующие (\(n − 1\)) строк содержат описания стежков. Каждый стежок имеет один из следующих видов:

• \(h \times y\) означает, что клетки с координатами \((x, y)\) и \((x + 1, y)\) содержат жемчужины, соединённые горизонтальным стежком (\(1 \le x \le a − 1; 1 \le y \le b\));

• \(v \times y\) означает, что клетки с координатами \((x, y)\) и \((x, y + 1)\) содержат жемчужины, соединённые вертикальным стежком (\(1 \le x \le a; 1 \le y \le b − 1\)).

Так как неизвестно в каком порядке рукодельница наносила стежки, их описания следуют в произвольном порядке. При этом гарантируется, что узор был получен в результате процесса, описанного в условии задачи.

Следующие \(q\) строк описывают фрагменты. Каждое описание содержит четыре целых числа \(x_1\), \(y_1\), \(x_2\) и \(y_2\) — координаты левой нижней и правой верхней клетки фрагмента (\(1 \le x_1 \le x_2 \le a; 1 \le y_1 \le y_2 \le b\)).

Выходные данные

Выходные данные должны содержать \(q\) строк, где \(i\)-я строка содержит количество связных частей узора в \(i\)-м фрагменте.

Таблица системы оценивания

Замечание

Пояснение к тесту из условия

Примеры
Входные данные
4 3
8 4
v 1 1
h 1 1
h 2 1
v 2 1
v 2 2
h 1 3
h 3 1
1 1 4 3
3 2 4 3
3 1 3 1
1 2 3 3
Выходные данные
1
0
1
2
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В далекой стране есть N городов. Был избран новый премьер-министр. В настоящее время в этой стране нет ни одной дороги, поэтому премьер-министр решил модернизировать страну, соединив некоторые города с двусторонними автострадами в транспортные сети. Два города будут расположены в одной и той же сети, если можно добраться до одного города от другого, используя недавно построенные дороги. Каждый город будет расположен в какой-то сети. Каждая сеть состоит из одного или нескольких городов.

Города представлены в виде точек в двумерной системе координат. Дорога между двумя городами представлена ​​в виде отрезка, соединяющего две точки, в которых расположены города. Длина дороги равна длине отрезка в километрах.

В настоящее время страна переживает экономический спад, поэтому премьер-министр решил, что из-за отсутствия бюджета они не будут строить дороги длиннее, чем D километров. Кроме того, премьер-министр радуется мелочам, поэтому он будет счастлив, если по крайней мере в одной сети будет существовать непустое подмножество городов (оно может включать все города в сети), где общая сумма жителей делится на К . Например, если K = 4 и есть сеть с городами, в которых есть 3 , 5 , 7 жителей соответственно, премьер-министр будет счастлив, потому что сумма жителей в первых двух городах равна 8 .

Помогите премьер-министру сократить расходы, определив минимальный уровень D , необходимый для того чтобы премьер-министр мог строить дороги и одновременно быть счастливым.

Входные данные

Первая строка ввода содержит целые числа N и K (1 ≤ N ≤ 50000, 1 ≤ K ≤ 30) . Каждая из следующих N строк содержит три целых числа x i ; y i ; k i (0 ≤ x i , y i , k i ≤ 100000000) , которые представляют координату x города, координату y и количество жителей в этом городе, соответственно. На входных данных не будет двух городов с одинаковыми координатами. Кроме того, не будет ни одного города, в котором число жителей делится на К .

Выходные данные

Первая и единственная строка вывода должна содержать минимальную D с точностью до 3 -х знаков после запятой, такую, что можно строить дороги с условием, что премьер-министр будет счастлив. Входные данные будут такими, чтобы всегда было решение.

Примечание

Объяснение первого примера: единственный способ удержать премьер-министра в счастливом настроение - все города должны находятся в одном округе. Минимальный D , для которого это возможно, равен 1.414 .

Объяснение второго примера: премьер-министр будет рад, если первые 5 городов находятся в одном округе. Если D = 5.657 , премьер-министр может соединить города 1, 2, 3, 5 с городом 4 . В этом случае сумма жителей в городах 1, 2, 3, 4, 5 составит 11 , что делится на 11 , Поэтому премьер-министр будет счастлив.

Примеры
Входные данные
3 3
0 4 4
1 5 1
2 6 1
Выходные данные
1.414
Входные данные
6 11
0 0 1
0 1 2
1 0 3
1 1 4
5 5 1
20 20 10
Выходные данные
5.657
Входные данные
6 5
20 20 9
0 0 3
0 1 1
10 0 1
10 1 6
12 0 3
Выходные данные
2.000

Страница: << 1 2 3 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест