Страница: << 64 65 66 67 68 69 70 Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Вася очень любит различные игры: шашки, шахматы, домино, крестики-нолики и т. д. Поскольку он играет в них уже достаточно давно, он успел изучить эти игры достаточно хорошо, и они стали скучными. Поэтому он теперь изобретает новые игры на основе тех, в которые уже наигрался. Недавно он изобрел игру «Доминошахматы».

Она состоит в следующем: Вася берет у дедушки большой кусок фанеры и раскрашивает его так, что у него получается шахматная доска размера N × M клеточек. Потом он берет кости домино и пытается покрыть ими полученную доску так, чтобы все клеточки были закрыты, не было наложений и никакие доминошки не торчали за края доски (каждая доминошка покрывает две соседние клетки).

Поскольку Вася не спрашивает разрешения у дедушки прежде, чем взять доску, он иногда берет ненужные доски, а иногда и те, которые дедушка хотел использовать в строительстве новой дачи. Как раз сегодня Вася взял «нужную» доску, поэтому дедушка был вынужден вырезать из Васиной доски два квадрата по одной клеточке.

Вася сначала огорчился, что не сможет поиграть в свою игру. А потом решил попробовать замостить доску с уже вырезанными клетками, причем так, чтобы вырезанные клетки не были накрыты доминошками.

Помогите Васе понять, можно ли это сделать.

Входные данные

В первой строке входных данных записаны числа N и M — размеры доски (1 ≤ N ≤ 200, 1 ≤ M ≤ 200, N·M > 2).

Во второй строке вводятся через пробел два целых числа — координаты x1 и y1 первой вырезанной клетки (1 ≤ x1 ≤ N, 1 ≤ y1 ≤ M).

В третьей строке вводятся через пробел два целых числа — координаты x2 и y2 второй вырезанной клетки (1 ≤ x2 ≤ N, 1 ≤ y2 ≤ M).

Первая и вторая клетки не совпадают.

Выходные данные

Выведите «YES», если доску с вырезанными клеточками можно покрыть доминошками, и «NO» в противном случае. (Запас доминошек у Васи бесконечный.)

Примеры
Входные данные
2 2
1 1
2 2
Выходные данные
NO
Входные данные
2 2
1 1
1 2
Выходные данные
YES
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Артур принимает участие в телешоу, в котором участникам необходимо выполнять различные интеллектуальные и физические задания, чтобы зарабатывать очки. В одном из таких заданий Артуру необходимо спасти маленького котенка.

Поле для выполнения задания представляет собой прямоугольник размером \(n \times m\) метров, разбитый на квадраты единичной площади. В одном из квадратов исходно находится Артур, в некотором другом квадрате находится котенок. Кроме того, один из квадратов содержит лифт, встав на который вместе с котенком, Артур успешно выполняет задание.

За один шаг Артур может перемещаться на любой квадрат, имеющий общую сторону с тем, на котором он стоит. После этого квадрат, на котором перед этим шагом стоял Артур, исчезает и больше на него вставать нельзя. Таким образом исчезают в том числе и квадрат, на котором исходно стоял Артур, и квадрат с котенком. Цель Артура - дойти до котенка, взять его и затем дойти до лифта. При этом очки за выполнение задания, зависят от числа шагов, которое сделает Артур, поэтому ему необходимо сделать минимальное число шагов.

Выяснив, сколько шагов ему придется сделать, Артур заинтересовался, сколько существует различных способов дойти до котенка, а затем с ним до лифта, сделав в сумме минимальное число шагов. Помогите ему это выяснить. Это число может быть довольно большим, поэтому Артур просит найти его по модулю \(10^9+7\).

Формат входного файла

Первая строка входного файла содержит два натуральных числа \(n\) и \(m\) - размеры поля для выполнения задания (\(2 \le n, m \le 100\)).

Вторая строка содержит два целых числа \(x_A\) и \(y_A\) - координаты квадрата, на котором исходно находится Артур (\(1 \le x_A \le n\), \(1 \le y_A \le m\)). Третья строка содержит два целых числа \(x_K\) и \(y_K\) - координаты квадрата, на котором сидит котенок (\(1 \le x_K \le n\), \(1 \le y_K \le m\)). Четвертая строка содержит два целых числа \(x_E\) и \(y_E\) - координаты квадрата, на котором находится лифт (\(1 \le x_E \le n\), \(1 \le y_E \le m\)). Эти три квадрата попарно различны.

Формат выходного файла

В единственной строке выходного файла выведите одно число - число способов дойти до котенка и затем до лифта, не наступая на один квадрат два раза, совершив при этом минимальное количество шагов. Число необходимо вывести по модулю \(10^9+7\).

Пояснения к примеру

Два способа для поля, приведенного в примере.

Примеры
Входные данные
3 3
1 1
3 3
2 2
Выходные данные
2
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Первокурсник Рома приехал в общежитие и, удивившись беспорядку в комнате и толстому слою пыли на полу, начал наводить порядок. Первым делом он решил вымыть пол. Для этого Рома в магазине приобрел инновационную швабру.

Изначально моющая часть швабры имела идеальную прямоугольную форму, но в процессе перевозки из магазина в общежитие у нее отломился один из углов. Таким образом, теперь она представляет собой многоугольник, граница которого состоит из двух соседних сторон прямоугольника, фрагментов двух оставшихся сторон и ломаной, соединяющей концы этих фрагментов.

Рома живет в большой прямоугольной комнате. Рома провел сломанной шваброй от одной стороны комнаты до другой, не отрывая ее от стены, так что в результате отломанный угол швабры оказался в углу комнаты. При этом часть соответствующей прямоугольной полосы пола в углу осталась невымытой.

Рома считает, что все точки, в которых в какой-то момент находилась моющая часть швабры оказались вымыты. Теперь он решил выяснить, какая часть этой полосы осталась грязной.

Помогите ему вычислить площадь этой части. Можете считать, что размер комнаты, в которой живет Рома, существенно больше размеров моющей части швабры.

Формат входного файла

Первая строка входного файла содержит два целых числа \(w\) и \(h\) - размеры моющей части швабры до повреждения (\(2 \le w, h \le 10^5\)).

Вторая строка содержит целое число \(n\) - число вершин ломаной, соединяющей соседние стороны швабры (\(2 \le n \le 10^5\)). В \(i\)-й из следующих \(n\) строк заданы два целых числа \(x_i\) и \(y_i\) (\(1 \le x_i < w\), \(1 \le y_i < h\), за исключением \(y_1 = h\), \(x_n = w\)) - координаты \(i\)-й вершины ломаной. Ломаная не имеет самопересечений и самокасаний.

Координаты введены таким образом, что стена, вдоль которой Рома провел шваброй, соответствует прямой \(y=h\).

Формат выходного файла

В выходной файл выведите площадь невымытой части пола с абсолютной или относительной погрешностью не более \(10^{-6}\). Это значит, что если правильный ответ \(a\), а вы вывели \(p\), то ваш ответ будет засчитан как правильный, если \(\frac{|a-p|}{\max(|a|, 1)}\le 10^{-6}\).

Примеры
Входные данные
9 7
9
3 7
4 5
5 6
4 4
5 2
6 4
7 2
8 3
9 2
Выходные данные
18.0
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

В одном уездном городе Эн было решено построить собственное метро. Все силы города были мобилизованы на выкапывание станций и прокладку подземных путей дедовскими лопатами.

Вся эта история нас бы совершенно не интересовала, если бы однажды в мэрию города не пришло письмо из далёкой страны Емакира. Оказалось, что компания Alpep подозревает администрацию уездного города в нарушении их патента на jMetro и грозится возбудить против города Эн дело. Согласно патенту, jMetro — это метро, в котором:

  • существует ровно одна узловая станция, в которой начинаются все радиальные линии метро, и это единственная станция, принадлежащая хотя бы двум радиальным линиям;
  • существует ровно одна кольцевая линия, все станции которой лежат на радиальных линиях, причём на каждой радиальной линии лежит ровно одна станция кольцевой линии;
  • кольцевая линия не проходит через узловую станцию;
  • кольцевая линия не проходит через конечные станции радиальных линий.

Поскольку компания Alpep известна своими необоснованными обвинениями в нарушениях патентов, мэрия города хочет проверить правомочность заявления компании.

Входные данные

В первой строке заданы два числа N и M ( 1 ≤ N , M ≤ 2·10 5 ) — количество станций метро и перегонов между ними. Следующие M строк содержат описания перегонов: каждая из них содержит по два числа — номера станций, между которыми есть перегон. По каждому перегону составы могут ездить как в одну, так и в другую сторону. Между любыми двумя станциями существует не более одного перегона. Никакой перегон не соединяет станцию саму с собой.

Выходные данные

Выведите « YES », если метро уездного города Эн нарушает патент jMetro, и « NO » в противном случае.

Примечание

Первый пример соответствует рисунку из условия.

Примеры
Входные данные
15 19
1 4
4 11
2 10
3 2
8 7
7 6
12 10
15 10
11 2
14 9
6 13
7 9
7 11
2 5
8 3
6 10
3 6
11 3
12 3
Выходные данные
YES
Входные данные
5 4
2 1
2 3
2 5
2 4
Выходные данные
NO
#111975
  
Источники: [ Командные олимпиады, ВКОШП, 2013, Задача B ]
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

В центре города Че есть пешеходная улица - одно из самых популярных мест для прогулок жителей города. По этой улице очень приятно гулять, ведь вдоль улицы расположено \(n\) забавных памятников.

Девочке Маше из города Че нравятся два мальчика из ее школы, и она никак не может сделать выбор между ними. Чтобы принять окончательное решение, она решила назначить обоим мальчикам свидание в одно и то же время. Маша хочет выбрать два памятника на пешеходной улице, около которых мальчики будут ее ждать. При этом она хочет выбрать такие памятники, чтобы мальчики не увидели друг друга. Маша знает, что из-за тумана мальчики увидят друг друга только в том случае, если они будут на расстоянии не более \(r\) метров.

Маше заинтересовалась, а сколько способов есть выбрать два различных памятника для организации свиданий.

Формат входного файла

В первой строке входного файла находятся два целых числа \(n\) и \(r\) (\(2 \le n \le 300\,000\), \(1 \le r \le 10^9\)) - количество памятников и максимальное расстояние, на котором мальчики могут увидеть друг друга.

Во второй строке задано \(n\) положительных чисел \(d_1, \ldots, d_n\), где \(d_i\) - расстояние от \(i\)-го памятника до начала улицы. Все памятники находятся на разном расстоянии от начала улицы. Памятники приведены в порядке возрастания расстояния от начала улицы (\(1 \le d_1 < d_2 < \ldots < d_n \le 10^9\)).

Формат выходного файла

Выведите одно число - число способов выбрать два памятника для организации свиданий.

Пояснения к примеру

В приведенном примере Маша может выбрать памятники под номерами 1 и 4 или памятники 2 и 4.

Примеры
Входные данные
4 4
1 3 5 8
Выходные данные
2

Страница: << 64 65 66 67 68 69 70 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест