Будем называть цепочкой слов длины n последовательность слов \(w_1\), \(w_2\), …, \(w_n\), такую, что для всех \(i\) от 1 до \(n\) – 1 слово \(w_i\) является собственным префиксом слова \(w_i\)+1.
Слово \(u\) длины \(k\) называется собственным префиксом слова \(v\) длины \(l\), если \(l\) > \(k\) и первые \(k\) букв слова \(v\) совпадают со словом \(u\). Например, «program» является собственным префиксом слова «programmer».
Задано множество слов \(S\) = {\(s_1\), \(s_2\), …, \(s_m\)} и последовательность чисел \(x\)[1], \(x\)[2], …, \(x\)[\(k\)]. Требуется найти такие числа \(l\) и \(r\) (\(l\) ≤ \(r\)), что \(s_x\)[\(l\)], \(s_x\)[\(l\) + 1], …, \(s_x\)[\(r\) – 1], \(s_x\)[\(r\)] является цепочкой слов, и количество слов в цепочке (число \(r\) – \(l\) + 1) максимально.
Первая строка входного файла содержит целое число \(m\) (1 ≤ \(m\) ≤ 250 000). Каждая из следующих \(m\) строк содержит по одному слову из множества \(S\).
Все слова не пусты, имеют длину, не превосходящую 250 000 символов, и состоят только из строчных букв латинского алфавита. Суммарная длина всех слов не превосходит 250 000.
Следующая строка содержит число \(k\) (1 ≤ \(k\) ≤ 250 000). Последняя строка входного файла содержит \(k\) чисел — последовательность чисел \(x\)[1], \(x\)[2], …, \(x\)[\(k\)] (для всех \(i\) выполнено 1 ≤ \(x\)[\(i\)] ≤ \(m\)).
Выведите в первой строке выходного файла два числа: \(l\) и \(r\). Если оптимальных ответов несколько, выведите любой из них. Разделяйте числа пробелом.
3 zngs rjzr zng 3 3 1 1
1 2
6 gjnuitvaowpy gjnuitvaowpym gjnuitvaowp rjzrociinzeco tgbotnzepnvm aigqbzpnerv 9 2 3 1 2 3 1 2 3 1
2 4
Васю угостили конфетами, а он решил частью конфет поделиться со своим младшим братом Петей. Однако он хочет разделить конфеты не поровну, а по-братски.
Для этого Вася решил сыграть сам с собой в следующую игру. Он разложил конфеты на столе в несколько кучек, которые расположил в ряд. Если кучек не меньше двух, то из первой и последней в этом ряду кучек он выбирает ту, в которой меньше конфет. Пусть в наименьшей кучке оказалось B конфет. Тогда он B конфет перекладывает из первой кучки во вторую, и также B конфет перекладывает из последней кучки в предпоследнюю. При этом, естественно, одна из кучек (или даже две, если в первой и последней кучках конфет было поровну) становится пустой, и Вася забывает про ее существование. Он повторяет эти операции до тех пор, пока на столе не останется одна или две кучки.
Если останется одна кучка, то Вася все конфеты съест сам, а если две — то конфеты из первой кучки он съест сам, а из второй кучки отдаст Пете.
Напишите программу, которая по исходному распределению конфет в кучках определит, чем закончится Васина игра.
Начальное расположение кучек конфет будет описываться K парами чисел Ai, Ni, которые обозначают, что на столе выложено подряд Ni кучек конфет, по Ai конфет в каждой.
Во входном файле задано сначала число K (1≤K≤105). Затем идет K пар чисел Ai, Ni (1≤Ai≤100, 1≤Ni≤108). Общее количество кучек так же не превысит 108.
В выходной файл выведите сначала 1 или 2 — количество кучек конфет, которые останутся в конце игры. Затем выведите соответственно одно или два числа — количества конфет в оставшихся кучках.
Комментарии к примерам тестов
1. Исходно конфеты расположены в следующих кучках: 2 кучки по 2 конфеты, две кучки из 3-х конфет и одна из 2-х:
2 2 3 3 2
Далее по 2 конфеты перекладывается из 1 и 5кучек во 2 и 4, при этом и 1 и 5 кучки становятся пустыми, т.е. на столе остается только 3 кучки:
4 3 5
Теперь по 4 конфеты перекладываются из 1 и 3 кучек во 2-ю и на столе остается две кучки, игра заканчивается с результатом 11 1
2. Изначальноу нас 7 кучек по 1 конфете в каждой. После первого перекладывания получится следующая конфигурация:
2 1 1 1 1 2
После второго:
3 1 3
После третьего останется одна кучка с 7 конфетами.
3. Изначально имеется 6 кучек:
1 2 3 4 5 5
После первого перекладывания получим:
3 3 4 6 4
После второго:
6 4 9 1
После третьего:
5 5 10
Наконец, получим:
15 5
3 2 2 3 2 2 1
2 11 1
1 1 7
1 7
5 1 1 2 1 3 1 4 1 5 2
2 15 5
Петя достаточно давно занимается в математическом кружке, поэтому он уже успел не только правила выполнения простейших операций, но и такое достаточно сложное понятие как симметрия. Для того, чтобы получше изучить симметрию Петя решил начать с наиболее простых геометрических фигур – треугольников. Он скоро понял, что осевой симметрией обладают так называемые равнобедренные треугольники. Поэтому теперь Петя ищет везде такие треугольники.
Напомним, что треугольник называется равнобедренным, если его площадь положительна, и у него есть хотя бы две равные стороны.
Недавно Петя, зайдя в класс, увидел, что на доске нарисовано n точек. Разумеется, он сразу задумался, сколько существует троек из этих точек, которые являются вершинами равнобедренных треугольников.
Требуется написать программу, решающую указанную задачу.
Входной файл содержит целое число n (3 ≤ n ≤ 1500). Каждая из последующих строк содержит по два целых числа – xi и yi – координаты i-ой точки. Координаты точек не превосходят 109 по абсолютной величине. Среди заданных точек нет совпадающих.
В выходной файл выведите ответ на задачу.
Разбалловка для личной олимпиады
Тесты 1-2 — из условия. Оцениваются в 0 баллов.
Тесты 3-13 — n не превосходит 500. Группа тестов оценивается в 40 баллов.
Тесты 14-28 — дополнительных ограничений нет. Группа тестов оценивается в 60 балла (вместе с предыдущими группами — 100 баллов).
Баллы начисляются за прохождение всех тестов группы и всех тестов предыдущих групп. При выставлении баллов за отдельные тесты каждый тест (кроме тестов из условия) оценивается в 4 балла.
3 0 0 2 2 -2 2
1
4 0 0 1 1 1 0 0 1
4
С детства Максим был неплохим музыкантом и мастером на все руки. Недавно он самостоятельно сделал несложный перкуссионный музыкальный инструмент — треугольник. Ему нужно узнать, какова частота звука, издаваемого его инструментом.
У Максима есть профессиональный музыкальный тюнер, с помощью которого можно проигрывать ноту с заданной частотой. Максим действует следующим образом: он включает на тюнере ноты с разными частотами и для каждой ноты на слух определяет, ближе или дальше она к издаваемому треугольником звуку, чем предыдущая нота. Поскольку слух у Максима абсолютный, он определяет это всегда абсолютно верно.
Вам Максим показал запись, в которой приведена последовательность частот, выставляемых им на тюнере, и про каждую ноту, начиная со второй, записано — ближе или дальше она к звуку треугольника, чем предыдущая нота. Заранее известно, что частота звучания треугольника Максима составляет не менее 30 герц и не более 4000 герц.
Требуется написать программу, которая определяет, в каком интервале может находиться частота звучания треугольника.
Первая строка входного файла содержит целое число \(n\) — количество нот, которые воспроизводил Максим с помощью тюнера (\(2\le n\le1000\)). Последующие \(n\) строк содержат записи Максима, причём каждая строка содержит две компоненты: вещественное число \(f_i\) — частоту, выставленную на тюнере, в герцах (\(30\le f_i\le4000\)), и слово «closer» или слово «further» для каждой частоты, кроме первой.
Слово «closer» означает, что частота данной ноты ближе к частоте звучания треугольника, чем частота предыдущей ноты, что формально описывается соотношением: \(|f_i-f_{треуг.}|<|f_{i-1}-f_{треуг.}|\).
Слово «further» означает, что частота данной ноты дальше, чем предыдущая.
Если оказалось, что очередная нота так же близка к звуку треугольника, как и предыдущая нота, то Максим мог записать любое из двух указанных выше слов.
Гарантируется, что результаты, полученные Максимом, непротиворечивы.
В выходной файл необходимо вывести через пробел два вещественных числа — наименьшее и наибольшее возможное значение частоты звучания треугольника, изготовленного Максимом. Числа должны быть выведены с точностью не хуже \(10^{-6}\).
3 440 220 closer 300 further
30.0 260.0
4 554 880 further 440 closer 622 closer
531.0 660.0
Глеб обожает шоппинг. Как-то раз он загорелся идеей подобрать себе кепку, майку, штаны и ботинки так, чтобы выглядеть в них максимально стильно. В понимании Глеба стильность одежды тем больше, чем меньше разница в цвете элементов его одежды.
В наличии имеется N1 кепок, N2 маек, N3 штанов и N4 пар ботинок (1 ≤ Ni ≤ 100 000). Про каждый элемент одежды известен его цвет (целое число от 1 до 100 000). Комплект одежды — это одна кепка, майка, штаны и одна пара ботинок. Каждый комплект характеризуется максимальной разницей между любыми двумя его элементами. Помогите Глебу выбрать максимально стильный комплект, то есть комплект с минимальной разницей цветов.
Для каждого типа одежды i (i = 1, 2, 3, 4) сначала вводится количество Ni элементов одежды этого типа, далее в следующей строке — последовательность из Ni целых чисел, описывающих цвета элементов. Все четыре типа подаются на вход последовательно, начиная с кепок и заканчивая ботинками. Все вводимые числа целые, положительные и не превосходят 100 000.
Выведите четыре целых числа — цвета соответственно для кепки, майки, штанов и ботинок, которые должен выбрать Глеб из имеющихся для того, чтобы выглядеть наиболее стильно. Если ответов несколько, выведите любой.
3 1 2 3 2 1 3 2 3 4 2 2 3
3 3 3 3
1 5 4 3 6 7 10 4 18 3 9 11 1 20
5 6 9 20