Страница: << 1 2 3 4 5 6 7 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Необходимо по данной матрице построить матрицу, у которой сумма строк и столбцов совпадает с суммами исходной матрицы, все числа кратны заданному P, а также отличаются от соответствующих чисел исходной матрице не более, чем на P.

Рассмотрим таблицу, состоящую из \(N\) строк и \(M\) столбцов. Если в каждой ячейке такой таблицы стоит целое число, назовем такую таблицу целочисленной матрицей. Скажем, что эта матрица кратна чиcлу \(p\), если все числа в ее ячейках кратны \(p\).

Рассмотрим теперь суммы элементов матрицы по строкам и столбцам соответственно. Обозначим сумму чисел \(i\)-й строки за \(H_i\), а сумму чисел \(j\)-го столбца за \(V_j\). Упорядоченный набор чисел (\(H_1\), \(H_2\), …, \(H_N\), \(V_1\), \(V_2\), …, \(V_M\)) назовем профилем матрицы. Скажем, что матрица почти кратна \(p\), если все числа, входящие в ее профиль, кратны \(p\). Почти кратная 5 матрица и ее профиль изображены на рисунке 1.

Если две матрицы \(A\) и \(B\) имеют одинаковый размер, причем элемент, стоящий на пересечении \(i\)-й строки и \(j\)-го столбца в матрице \(A\) отличается от соответствующего элемента матрицы \(B\) не более чем на \(p\), скажем, что \(A\) отличается от \(B\) не более чем на \(p\). Скажем, что матрица \(B\) похожа на матрицу \(A\) относительно числа \(p\), если
1. отличается от не более чем на \(p\)
2. профили \(B\) и \(A\) совпадают.
На рисунке 2 изображены две похожие относительно числа 5 матрицы, первая из них почти кратна 5, а вторая кратна 5. Третья матрица на рисунке 2 тоже кратна 5, но непохожа на первую (хотя похожа на вторую).

Дано число p и почти кратная p матрица A. Ваша задача - найти такую матрицу B, чтобы она была кратна p и похожа на A относительно p.

Входные данные

В первой строке входных данных задаются целые числа \(p\) (1 <= \(p\) <= 10), \(N\) и \(M\) (1 <= \(N\), \(M\) <= 30). Следующие \(N\) строк содержат по \(M\) целых неотрицательных чисел, не превышающих 1000, которые являются элементами исходной матрицы \(A\).

Выходные данные

Выведите матрицу \(B\) по строкам - сначала \(M\) элементов первой строки, затем \(M\) элементов второй, и т. д. Разделяйте числа пробелами и/или переводами строк. Заботиться о красивом форматировании таблицы не надо. Если искомой матрицы не существует, выведите единственное число - "-1". Если решений несколько, выведите любое из них.

Примеры
Входные данные
3 3 3
1 2 3
2 3 1
3 1 2
Выходные данные
3 0 3 
0 3 3 
3 3 0 
Подсчет количества циклов в графе, где у каждой вершины ровно одно исходящее ребро.

У Васи есть N свинок-копилок, свинки занумерованы числами от 1 до N. Каждая копилка может быть открыта единственным соответствующим ей ключом или разбита.

Вася положил ключи в некоторые из копилок (он помнит, какой ключ лежит в какой из копилок). Теперь Вася собрался купить машину, а для этого ему нужно достать деньги из всех копилок. При этом он хочет разбить как можно меньшее количество копилок (ведь ему еще нужно копить деньги на квартиру, дачу, вертолет…). Помогите Васе определить, какое минимальное количество копилок нужно разбить.

Входные данные

В первой строке содержится число N — количество свинок-копилок (1≤N≤100000). Далее идет N строк с описанием того, где лежит ключ от какой копилки: в i-ой из этих строк записан номер копилки, в которой находится ключ от i-ой копилки.

Выходные данные

Выведите единственное число: минимальное количество копилок, которые необходимо разбить.

Пример

Входные данные

Выходные данные

Комментарий

4

2

1

2

4

2

Ключи от первой и третьей копилки лежат в копилке 2, ключ от второй — в первой, а от четвертой — в ней самой.

Чтобы открыть все копилки, достаточно разбить, например, копилки с номерами 1 и 4.

ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Прямоугольную таблицу, состоящую из N строк и M столбцов, раскрашивают следующим образом. Каждый столбец таблицы и каждую строку красят либо в синий, либо в желтый цвет. В итоге клетки, оказавшиеся на пересечении синего столбца и синей строки оказываются синими, желтого столбца и желтой строки — желтыми, а клетки на пересечении синего столбца и желтой строки, или, наоборот, желтого столбца и синей строки — зелеными.

Раскраска всех клеток таблицы (или просто сама таблица) называется правильной, если она может быть получена описанным выше способом.

Вам дана прямоугольная таблица, которую нужно раскрасить таким образом. Про некоторые клетки известно, какого цвета они должны быть, а остальные клетки могут в итоге быть любого цвета. Определите, сколько существует различных правильных таблиц, в которых нужные клетки покрашены в нужный цвет.

Входные данные

Вводятся числа N и M — количество строк и столбцов таблицы (1≤N≤30, 1≤M≤30). Далее записано N строк по M чисел в каждой, задающие цвета, в которые должны быть окрашены клетки:

0 — клетка может в итоге быть любого цвета

1 — клетка должна быть синей

2 — клетка должна быть желтой

3 — клетка должна быть зеленой

Выходные данные

Выведите одно число — количество различных правильных таблиц, в которых нужные клетки покрашены в нужный цвет. Обратите внимание, что если два или более способов раскраски столбцов и строк таблицы приводят к одинаковой раскраске самой таблицы, то это нужно считать как один вариант раскраски таблицы (см. пример 2).

Примеры

Входные данные

Выходные данные

3 4

1 0 0 0

3 0 0 0

0 0 0 0

16

2 2

3 3

3 3

1

2 2

2 2

2 3

0

ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Задан ориентированный граф, в котором у каждой вершины существует ровно одно исходящее ребро. Требуется найти количество циклов в нем.

У Васи есть N свинок-копилок, свинки занумерованы числами от 1 до N. Каждая копилка может быть открыта единственным соответствующим ей ключом или разбита.

Вася положил ключи в некоторые из копилок (он помнит, какой ключ лежит в какой из копилок). Теперь Вася собрался купить машину, а для этого ему нужно достать деньги из всех копилок. При этом он хочет разбить как можно меньшее количество копилок (ведь ему еще нужно копить деньги на квартиру, дачу, вертолет…). Помогите Васе определить, какое минимальное количество копилок нужно разбить.

Входные данные

В первой строке содержится число N — количество свинок-копилок (1≤N≤100). Далее идет N строк с описанием того, где лежит ключ от какой копилки: в i-ой из этих строк записан номер копилки, в которой находится ключ от i-ой копилки.

Выходные данные

Выведите единственное число: минимальное количество копилок, которые необходимо разбить.

Пример

Входные данные

Выходные данные

Комментарий

4

2

1

2

4

2

Ключи от первой и третьей копилки лежат в копилке 2, ключ от второй — в первой, а от четвертой — в ней самой.

Чтобы открыть все копилки, достаточно разбить, например, копилки с номерами 1 и 4.

ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Одна из команд-участниц олимпиады решила вернуться домой на электричках. При этом ребята хотят попасть домой как можно раньше. К сожалению, не все электрички идут от города, где проводится олимпиада, до станции, на которой живут ребята. И, что еще более обидно, не все электрички, которые идут мимо их станции, останавливаются на ней (равно как вообще, электрички останавливаются далеко не на всех станциях, мимо которых они идут)

Все станции на линии пронумерованы числами от 1 до N. При этом станция номер 1 находится в городе, где проводится олимпиада, и в момент времени 0 ребята приходят на станцию. Станция, на которую нужно попасть ребятам, имеет номер E.

Напишите программу, которая по данному расписанию движения электричек вычисляет минимальное время, когда ребята могут оказаться дома.

Входные данные

Во входном файле записаны сначала числа N (\(2 \le N \le 100\)) и E (\(2 \le E \le N\)). Затем записано число M (\(0 \le M \le 100\)), обозначающее число рейсов электричек. Далее идет описание M рейсов электричек. Описание каждого рейса электрички начинается с числа Ki (\(2 \le K \le N\)) — количества станций, на которых она останавливается, а далее следует Ki пар чисел, первое число каждой пары задает номер станции, второе — время, когда электричка останавливается на этой станции (время выражается целым числом из диапазона от 0 до 109). Станции внутри одного рейса упорядочены в порядке возрастания времени. В течение одного рейса электричка все время движется в одном направлении — либо от города, либо к городу.

Выходные данные

В выходной файл выведите одно число — минимальное время, когда ребята смогут оказаться на своей станции. Если существующими рейсами электричек они добраться не смогут, выведите –1.

Примеры
Входные данные
5 2
2
4 1 1 3 2 4 10 5 20
3 5 10 4 15 2 40
Выходные данные
40

Страница: << 1 2 3 4 5 6 7 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест