Турнир Архимеда(52 задач)
Кировские командные турниры(8 задач)
Барнаульские командные турниры(10 задач)
Московская командная олимпиада(246 задач)
Командные чемпионаты школьников Санкт-Петербурга по программированию(167 задач)
ВКОШП(180 задач)
Вася учится делить с остатком. Он взял некоторое число, разделил его на \(2\) и отбросил остаток. То, что получилось, разделил на \(3\) и опять отбросил остаток. Полученное число он разделил на \(4\), отбросил остаток и получил число \(K\). Какое число мог выбрать Вася изначально?
Вводится натуральное число \(K\), не превосходящее \(1 000\).
Выведите все возможные числа, которые мог выбрать изначально Вася, по возрастанию, разделяя их пробелами.
1
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Задано натуральное число \(A\). Необходимо представить его в виде суммы двух неотрицательных целых чисел \(B\) и \(C\) так, чтобы сумма цифр десятичных представлений чисел \(B\) и \(C\) была как можно больше.
Входной файл содержит целое число \(A\) (\(1 \le A \le 10^{18}\)).
В первой строке выходного файла выведите \(s\) - максимальную возможную сумму цифр чисел \(B\) и \(C\). Во второй строке выведите через пробел сами числа \(B\) и \(C\), сумма которых равна \(A\), а сумма цифр которых равна \(s\). Если оптимальных ответов несколько, то выведите любой из них.
4
4 2 2
28
19 9 19