Турнир Архимеда(52 задач)
Кировские командные турниры(8 задач)
Барнаульские командные турниры(10 задач)
Московская командная олимпиада(246 задач)
Командные чемпионаты школьников Санкт-Петербурга по программированию(167 задач)
ВКОШП(180 задач)
Слова в языке Мумба-Юмба могут состоять только из букв \(a\), \(b\) и при этом:
* никогда не содержат двух букв \(b\) подряд,
* ни в одном слове никогда не встречается три одинаковых подслова подряд. Например, по этому правилу в язык Мумба-Юмба не могут входить слова aaa (так как три раза подряд содержит подслово a), ababab (так как три раза подряд содержит подслово ab), aabababa (также три раза подряд содержит подслово ab).
Все слова, удовлетворяющие вышеописанным правилам, входят в язык Мумба-Юмба.
Напишите программу, которая подсчитает количество слов длины ровно \(K\) символов в языке племени Мумба-Юмба.
Вводится одно число \(K\) (1 ≤ \(K\) ≤ 100 000)
Выведите одно число — количество слов в этом языке длины \(K\).
Слова в языке Мумба-Юмба могут состоять только из букв a, b, c, и при этом:
Все слова, удовлетворяющие вышеописанным правилам, входят в язык Мумба-Юмба.
Напишите программу, которая по данному слову определит, принадлежит ли оно этому языку.
Формат входных данных
Вводится одно слово, состоящее только из строчных букв a, b, c, длины не более 100.
Формат выходных данных
Если слово входит в язык Мумба-Юмба, выведите YES, в противном случае выведите NO.
abca
YES
Робот Бендер решил открыть аттракцион «Кручу-Верчу» с целью своего обогащения. Аттракцион состоит в следующем: Бендер прячет шарик под одним из \(k\) одинаковых стаканчиков, расположенных на позициях от 1 до \(k\), затем \(n\) раз быстро меняет местами какие-то пары стаканчиков, после чего предлагает отгадать под каким из стаканчиков сейчас шарик.
Бендер — робот, поэтому действует он по определенной программе. Бендер строит последовательность целых чисел \(x_i\), при этом \(x_1 = c\), а \(x_i = a \cdot x_{i-1} + b\) для \(i > 1\).
На \(i\)-ом шаге Бендер меняет местами стаканчики на позициях с номерами \((x_i \bmod k) + 1\) и \(\left( (x_i + 1) \bmod k \right) + 1\).
В начале робот прячет шарик под стаканчик на позиции с номером \(r\). Бендер хочет, чтобы после \(n\) обменов шарик оказался под стаканчиком на позиции с номером \(l\).
Найдите такие \(a\), \(b\) и \(c\), чтобы стаканчик с шариком переместился с \(r\)-й позиции на \(l\)-ю.
В единственной строке входного файла четыре целых числа \(n\), \(k\), \(r\) и \(l\) (\(1 \le n \le 10^5\); \(2 \le k \le 10\); \(1 \le r, l \le k\)).
Если таких чисел не существует, выведите в выходной
файл единственное слово «Impossible
».
Иначе выведите три целых неотрицательных числа \(a\), \(b\) и \(c\).
Числа не должны превосходить \(1000\).
Развитие химической науки привело к тому, что высшие фуллерены (сложные молекулы углерода в виде шарика или продолговатой трубки) стали недорогими в производстве. Благодаря своим уникальным оптическим свойствам они нашли свое место и в ювелирной промышленности. Ювелирный дом «Кёрл, Крото и Смолли» выпустил уникальную коллекцию украшений из фуллеренов. Украшение продается в виде набора трубок-фуллеренов различной длины, из которых можно составить украшение самостоятельно.
Норма Джин очень любит сложные углеродные соединения и купила себе набор фуллеренов для составления украшений. Ее фирменный стиль состоит в том, чтобы носить украшения, составленные ровно из трех трубок фуллерена, причем в результате должен получаться тупоугольный треугольник. Норма Джин — объект постоянной охоты папарацци, поэтому не может позволить себе дважды появиться на людях с одним и тем же украшением.
Помогите Норме Джин узнать, сколько вечеров она сможет посетить с имеющимся у нее набором фуллереновых трубок. Фуллереновые трубки одинаковой длины считаются различными. Треугольники считаются различными, если они отличаются хотя бы одной трубкой. Треугольники, состоящие из одних и тех же трубок, считаются одинаковыми независимо от порядка трубок.
Первая строка входного файла содержит одно число N (1 ≤ N ≤ 100) — количество фуллереновых трубок в наборе Нормы Джин.
Вторая строка содержит N упорядоченных по возрастанию целых чисел Li (1 ≤ Li ≤ 20 000) — длины трубок.
Выведите одно целое число — количество вечеров, на которые сможет сходить Норма Джин.
4 2 2 3 4
3