Турнир Архимеда(52 задач)
Кировские командные турниры(8 задач)
Барнаульские командные турниры(10 задач)
Московская командная олимпиада(246 задач)
Командные чемпионаты школьников Санкт-Петербурга по программированию(167 задач)
ВКОШП(180 задач)
На днях Алиса делала уборку в своей комнате и нашла дневник, который вела в начальной школе. Там она с удивлением обнаружила запись о том насколько ее поразило то, что \(2 + 2 = 2 \cdot 2\). Невероятно, умножение и сложение дают один и тот же результат!
Эта запись натолкнула Алису на следующую задачу: пусть целые заданы числа \(a\) и \(b\). Сколько различных значений в наборе чисел
\(a + b\), | \(\;a - b\), | \(\;a \cdot b\), | \(\;a / b\), | \(\;a^b\), |
\(b + a\), | \(\;b - a\), | \(\;b \cdot a\), | \(\;b / a\), | \(\;b^a\). |
Деление происходит без округления, результат деления может не быть целым числом. Если какое-либо выражение из этого набора некорректно, то Алиса его не рассматривает. Некорректными считаются деление на ноль и возведение нуля в неположительную степень.
Первая строка входного файла содержит целые числа \(a\) и \(b\), разделенные пробелом (\(|a|, |b| \le 10^9\)).
Выведите в выходной файл количество различных чисел в приведенном наборе.
Игра «Палиндромика» набирает все большую популярность в казино Рулеттенбурга. Правила «Палиндромики» довольно просты: в начале игры на листок записывается строка и игроки поочередно стирают первый или последний символ. Побеждает игрок, перед ходом которого строка представляет собой палиндром. Палиндромом называется строка, которая читается одинаково как слева направо, так и справа налево.
Алексей Иванович — азартный игрок, однако вместо участия в игре предпочитает делать ставки. Ему удалось узнать, какая строка будет предложена для игры. Алексею Ивановичу предсказать исход игры при оптимальных действиях обоих игроков не под силу. За помощью он обратился к вам.
В единственной строке входного файла содержится строка, предложенная игрокам. Строка состоит из маленьких латинских букв. Длина строки не превышает 250 символов.
Выведите номер игрока, который победит в игре (число 1 или 2) при оптимальной игре каждого из игроков.
3 uho
1
6 ababab
2