Страница: 1 Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Задана таблица, некоторые клетки содержат города. Расстояние между городами определяется как |x1 - x2| + |y1 - y2|. Требуется выбрать место для столицы так, чтобы суммарное расстояние до всех городов было минимальным. Столица не должна совпадать с существующим городом.

В некотором царстве, в некотором государстве было \(N\) городов, и все они, судя по главной карте императора, имели целые координаты. В те годы леса были дремучие, дороги же строить умели только параллельно осям координат, так что расстояние между двумя городами определялось как |\(x_1\) - \(x_2\)| + |\(y_1\) - \(y_2\)|.

Император решил построить \(N\)+1-ый город и сделать его столицей своего государства, при этом координаты столицы также должны быть целыми. Место для столицы следует выбрать так, чтобы среднее арифметическое расстояний между столицей и остальными городами было как можно меньше. Однако, разумеется, столицу нельзя строить на месте существующего города.

Нелегкая задача выбрать место для столицы поручена Вам.

Входные данные

В первой строке вводится число \(N\) - количество городов (1 <= \(N\) <= 100). Следующие \(N\) строк содержат координаты городов - пары целых чисел, не превышающих 1000 по абсолютной величине.

Выходные данные

Выведите два целых числа - координаты точки, где следует построить столицу. Если решений несколько, выведите любое.

Примеры
Входные данные
8
0 0
1 0
2 0
0 1
2 1
0 2
1 2
2 2
Выходные данные
1 1
Входные данные
4
0 0
1 1
0 1
1 0
Выходные данные
0 -1
Дано N последовательностей. Требуется для каждой пары последовательностей найти медиану объединения этих последовательностей.

Дано N упорядоченных по неубыванию последовательностей целых чисел (т.е. каждый следующий элемент больше либо равен предыдущему), в каждой из последовательностей ровно L элементов. Для каждых двух последовательностей выполняют следующую операцию: объединяют их элементы (в объединенной последовательности каждое число будет идти столько раз, сколько раз оно встречалось суммарно в объединяемых последовательностях), упорядочивают их по неубыванию и смотрят, какой элемент в этой последовательности из 2L элементов окажется на месте номер L (этот элемент называют левой медианой).

Напишите программу, которая для каждой пары последовательностей выведет левую медиану их объединения.

Входные данные

Сначала вводятся числа N и L (2≤N≤100, 1≤L≤300). В следующих N строках задаются последовательности. Каждая последовательность состоит из L чисел, по модулю не превышающих 30000.

Выходные данные

В первой строке выведите медиану объединения 1-й и 2-й последовательностей, во второй строке — объединения 1-й и 3-й, и так далее, в (N‑1)-ой строке — объединения 1-й и N-ой последовательностей, далее медиану объединения 2-й и 3-й, 2-й и 4-й, и т.д. до 2-й и N-ой, затем 3-й и 4-й и так далее. В последней строке должна быть выведена медиана объединения (N–1)-й и N-ой последовательностей.

Пример

Входные данные

3 6

1 4 7 10 13 16

0 2 5 9 14 20

1 7 16 16 21 22
	

	

Выходные данные

7

10

9

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест