---> 2 задач <---
Источники --> Командные олимпиады --> Московская командная олимпиада
    8 класс(18 задач)
    9-11 классы(228 задач)
Страница: 1 Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Кодовый замок состоит из \(N\) рычажков, каждый из которых может быть установлен в любое из \(K\) положений, обозначенных натуральными числами от 1 до \(K\). Известно, что для того чтобы открыть замок, нужно, чтобы сумма положений любых трех последовательных рычажков была равна \(K\).

Два рычажка уже установлены в некоторые положения, и их переключать нельзя. Рычажок с номером \(p_1\) установлен в положение \(v_1\), а рычажок \(p_2\) – в положение \(v_2\).

Напишите программу, которая определит, сколькими способами можно установить остальные рычажки, чтобы открыть замок.

Входные данные

Вводятся натуральные числа \(N\), \(K\), \(p_1\), \(v_1\), \(p_2\), \(v_2\). 3 ≤ \(N\) ≤ 100 000, 3 ≤ \(K\) ≤ 100 000, \(p_1\) ≠ \(p_2\), 1 ≤ \(p_1\) ≤ \(N\), 1 ≤ \(p_2\) ≤ \(N\), 1 ≤ \(v_1\) ≤ \(K\), 1 ≤ \(v_2\) ≤ \(K\).

Выходные данные

Выведите одно число — количество искомых комбинаций или 0, если, соблюдая все условия, замок открыть невозможно.

Примеры
Входные данные
3 3 1 1 2 1
Выходные данные
1
Входные данные
3 3 1 1 3 2
Выходные данные
0
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Кодовый замок состоит из \(N\) рычажков, каждый из которых может быть установлен в любое из \(K\) положений, обозначенных натуральными числами от 1 до \(K\). Известно, что для того чтобы открыть замок, нужно, чтобы сумма положений любых трех последовательных рычажков была равна \(K\).

Два рычажка уже установлены в некоторые положения, и их переключать нельзя. Рычажок с номером \(p_1\) установлен в положение \(v_1\), а рычажок \(p_2\) – в положение \(v_2\).

Напишите программу, которая определит, сколькими способами можно установить остальные рычажки, чтобы открыть замок.

Входные данные

Вводятся натуральные числа \(N\), \(K\), \(p_1\), \(v_1\), \(p_2\), \(v_2\). Рычажки пронумерованы числами от 1 до \(N\).

3 ≤ \(N\) ≤ 10000, 3 ≤ \(K\) ≤ 6, \(p_1\)≠\(p_2\), 1 ≤ \(p_1\) ≤ \(N\), 1 ≤ \(p_2\) ≤ \(N\), 1 ≤ \(v_1\) ≤ \(K\), 1 ≤ \(v_2\) ≤ \(K\).

Выходные данные

Выведите одно число — количество искомых комбинаций или 0, если, соблюдая все условия, замок открыть невозможно.


Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест