Алгоритмы(1657 задач)
Структуры данных(279 задач)
Интерактивные задачи(17 задач)
Другое(54 задач)
Сережа играет в "Морской бой". Поле для игры представляет собой квадрат 10 x 10 клеток. На поле отмечены клетки, в которые Сережа уже стрелял. Однако, пока он не попал ни в один корабль противника. Требуется определить максимальную длину корабля, который может поместиться в небитых клетках этого поля. Корабль представляет из себя прямоугольник ширины 1 и располагается горизонтально или вертикально. (Гарантируется, что на поле есть хотя бы одна небитая клетка.)
Вводятся 10 строк по 10 чисел в каждой, числа разделены пробелами. Число 1 означает, что в соответствующую клетку стреляли, число 0 – что в клетку не стреляли.
Требуется вывести одно число от 1 до 10 – максимальную возможную длину корабля.
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
10
На прямой тропинке на расстоянии 1 метр друг от друга сидят два кузнечика. Время от времени один из кузнечиков прыгает на несколько сантиметров влево или вправо. Требуется узнать, каково было минимальное расстояние, на которое сближались кузнечики в процессе прыжков. (Расстояние считается только в те моменты, когда оба кузнечика сидят на земле).
В первой строке вводится одно число \(N\) (1 ≤ \(N\) ≤ 100) – общее количество прыжков, а затем \(N\) чисел, описывающих прыжки. Модуль числа равен длине прыжка в сантиметрах; число отрицательное, если кузнечик начинал этот прыжок по направлению к другому кузнечику, и положительное – если от другого кузнечика. Числа по модулю не превосходят 100 и все отличны от 0. (Кузнечики могут перепрыгивать друг через друга. Гарантируется, что кузнечики не приземляются друг на друга.)
Требуется вывести одно число – минимальное расстояние в сантиметрах, на которое сближались кузнечики.
5 1 2 3 4 5
100
Ваня наблюдает за лягушкой. Изначально она сидит в точке 0 числовой прямой. Каждую секунду она прыгает на 1 вправо, пока не достигнет точки K. Затем она начинает каждую секунду прыгать на 1 влево, пока не вернется в точку 0, затем – опять вправо и т. д. Требуется определить, где окажется лягушка через T секунд.
Вводятся два числа \(K\) и \(T\), разделенные пробелом. Оба числа натуральные и не превосходят 1 000 000 000.
Вывести одно число – координату лягушки в момент времени \(T\).
10 6
6