---> 3 задач <---
Страница: 1 Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Родители подарили мальчику Пете очень много одинаковых кубиков. Наиболее интересным сооружением из кубиков Петя счел двусторонние лесенки.

В основании (нижнем ряду) такой лесенки расположено \(N\) кубиков, а каждый следующий ряд кубиков укладывается на предыдущий так, что один кубик укладывается ровно на один нижестоящий кубик, а по крайней мере на самый правый и самый левый кубики предыдущего ряда новые кубики не кладутся (чтобы получилась ступенька).

Петя поручил старшему брату подсчитать, сколько можно построить различных лесенок, состоящих из ровно \(K\) рядов кубиков, в основании которых лежит ровно \(N\) кубиков. При этом, если одну лесенку можно получить из другой путем зеркального отображения, то они все равно считаются различными.

Входные данные

Вводятся два числа \(N\) и \(K\) (\(1 \le N \le 100\), \(1 \le K \le 100\)).

Выходные данные

Выведите одно число – количество различных лесенок. Гарантируется, что правильный ответ не будет превышать \(10^{18}\).

Примеры
Входные данные
10 4
Выходные данные
84
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В парикмахерской работают три мастера. Каждый тратит на одного клиента ровно полчаса, а затем сразу переходит к следующему, если в очереди кто-то есть, либо ожидает, когда придет следующий клиент.

Даны времена прихода клиентов в парикмахерскую (в том порядке, в котором они приходили). Требуется для каждого клиента указать время, когда он выйдет из парикмахерской.

Входные данные

В первой строке вводится натуральное число N, не превышающее 100 – количество клиентов.

N строках вводятся времена прихода клиентов – по два числа, обозначающие часы и минуты (часы – от 0 до 23, минуты – от 0 до 59). Времена указаны в порядке возрастания (все времена различны).

Гарантируется, что всех клиентов успеют обслужить до полуночи.

Выходные данные

Требуется вывести N пар чисел: времена выхода из парикмахерской 1-го, 2-го, …, N-го клиента (часы и минуты).

Примеры
Входные данные
3
10 0
10 1
10 2
Выходные данные
10 30
10 31
10 32
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Мальчик Антон решает вступительную работу в летний математический лагерь. В ней \(N\) заданий, которые можно выполнять в произвольном порядке. Разные задачи требуют разного времени для решения. При этом известно, что если задание с номером \(i\) выполнять \(j\)-м по счету, Антону потребуется \(T_i\)*\(j\) времени: чем больше думаешь, тем больше устаешь. Например, если начать с первой задачи, а затем выполнить вторую, то потребуется \(T_1\)*1 + \(T_2\)*2 времени, а если выполнить сначала вторую задачу, а затем первую – то \(T_2\)*1 + \(T_1\)*2. Подскажите Антону, в каком порядке нужно решать задачи, чтобы на выполнение всей работы ушло как можно меньше времени.

Входные данные

В первой строке вводится число \(N\), во второй строке —\(N\) чисел через пробел\(T_1\), \(T_2\), …, \(T_N\), разделенные пробелами. Все числа целые и удовлетворяют следующим ограничениям: 0 < \(N\) ≤ 10, 0 < \(T_i\) ≤ 100.

Выходные данные

Требуется вывести сначала минимальное время, за которое можно решить все задачи, а затем – номера задач в том порядке, в котором их нужно решать, чтобы уложиться в это время. Все числа разделяются пробелами. Если решений несколько, нужно выдать любое из них.

(Во входных данных не хватает вывода номеров задач)


Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест