Петя учится играть в шахматы. Недавно он заметил, что несмотря на то, что кони умеют прыгать через фигуры, они могут мешать друг другу дойти до нужных клеток. Петя поставил на доску двух коней: черного и белого, и для каждого их них выбрал клетку, на которой он хочет его видеть. Теперь ему интересно, какое минимальное число ходов потребуется коням, чтобы дойти до нужных клеток.
Кони ходят по шахматным правилам (на одну клетку по горизонтали и две по вертикали или на одну клетку по вертикали и на две по горизонтали). Порядок ходов черного и белого коня может быть произвольным. Коням не разрешается одновременно вставать на одну и ту же клетку.
Во входном файле записаны четыре клетки шахматной доски в следующем порядке: начальное положение белого коня, начальное положение черного коня, конечное положение белого коня, конечное положение черного коня. Клетка шахматной доски задается горизонталью (буква от «a» до «h») и вертикалью (цифра от 1 до 8), не разделенными пробелами. Описания клеток отделяются друг от друга одним пробелом.
Гарантируется, что исходно кони находятся на различных клетках, и в конце кони также должны оказаться на различных клетках.
Выведите в первой строке выходного файла количество необходимых ходов. Далее выведите последовательность ходов. Ход описывается следующим образом: буква, соответствующая цвету коня («W» для белого или «B» для черного) и клетка, на которую нужно пойти. Клетку выведите в таком же формате, как во входном файле.
Если искомой последовательности ходов не существует, выведите на первой строке выходного файла число -1.
a1 a2 a1 a6
2 B b4 B a6
Мальчику Васе очень нравится известная игра «Сапер». В нее играет один человек. Игра идет на клетчатом поле размером \(m\)×\(n\) (\(m\) строк, \(n\) столбцов). В некоторых клетках поля стоят мины. В каждой из остальных клеток записано либо число от 1 до 8 – количество мин в соседних с ней клетках, либо ничего не написано – это означает, что в соседних клетках мин нет. Клетки являются соседними, если они имеют хотя бы одну общую вершину. В одной клетке не может стоять более одной мины. Будем называть поле с расположенными на нем минами и числами картой.
Изначально все клетки поля закрыты. Игрок за один ход может открыть какую-нибудь клетку. После этого игроку показывается содержимое этой клетки, и если в открытой им клетке оказывается мина, он проигрывает. В противном случае игра продолжается. Цель игры – открыть все клетки, в которых нет мин.
У Васи на компьютере есть эта игра, но ему кажется, что все карты, которые в ней есть, некрасивые и неинтересные. Поэтому он решил нарисовать свои. При этом он хочет, чтобы карты, которые он нарисует, после того, как они будут открыты, выглядели красиво.
У Васи есть рисунки, нарисованные на клетчатой бумаге следующим образом: некоторые клетки закрашены в черный цвет, а некоторые оставлены белыми. Вася хочет по каждому такому рисунку сделать соответствующее ему поле для игры в «Сапера» по следующему правилу: если на рисунке клетка покрашена в черный цвет, то на этом месте должна быть либо мина, либо число от 1 до 8, если же клетка оставлена белой, то на игровом поле она должна быть пустой.
Напишите программу, которая сделает это за Васю.
В первой строке входного файла содержатся числа \(m\) и \(n\) (1 ≤ \(m\), \(n\) ≤ 100) – количество строк и столбцов соответственно. Далее идет таблица из \(m\) строк, по \(n\) чисел в каждой строке, задающая Васин рисунок. Каждое число в таблице равно 0 или 1, число 0 означает, что соответствующая клетка на рисунке белая, 1 – черная. Числа в строках разделяются пробелами.
Выходной файл должен содержать \(m\) строк по \(n\) символов – карту игрового поля, \(j\)-ый символ \(i\)-ой строки должен содержать символ «*» (звездочка) если в клетке (\(i\),\(j\)) стоит мина, цифру от 1 до 8, если в этой клетке стоит соответствующее число, либо «.» (точка), если клетка (\(i\),\(j\)) пустая. Символы пробелами не разделяйте. Если построить поле, соответствующее рисунку, невозможно, выходной файл должен содержать одну строку с сообщением «No solution».
3 5 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
***** 23332 .....
3 3 0 1 0 0 0 0 0 0 0
No solution
Для заданного числа \(n\) найдите наименьшее положительное целое число с суммой цифр \(n\), которое делится на \(n\).
Во входном файле содержатся целое число \(n\) (1 ≤ \(n\) ≤ 1000).
Выходной файл должен содержать искомое число. Ведущие нули выводить не разрешается.
1
1
10
190
Требуется определить количество нечетных чисел в заданной строке треугольника Паскаля.
Треугольник Паскаля – это бесконечный треугольник из чисел, который имеет следующий вид:
Строки треугольника Паскаля нумеруются с нуля, числа в каждой строке также нумеруются с нуля. Нулевая строка содержит единственное число – единицу, а каждая следующая содержит на одно число больше, чем предыдущая. Нулевое и последнее число в каждой строке равны единице, а каждое из остальных равно сумме двух чисел предыдущей строки, расположенных над ним.
Таким образом, \(i\)-ая строка содержит \(i\) + 1 число. Если обозначить \(j\)-ый элемент \(i\)-ой строки как \(a_i\),\(j_,\) то выполняется равенство \(a_i\),\(j\) = \(a_i\) - 1,\(j\) - 1 + \(a_i\)-1,\(j\). Заметим, что это равенство выполняется и для крайних элементов, если положить отсутствующие элементы предыдущей строки (элементы с номерами -1 и \(i\)) равными нулю.
Коля хочет узнать, сколько нечетных чисел в n-ой строке треугольника Паскаля. Он начал рисовать треугольник, но очень скоро тот перестал помещаться на листочек. Тогда Коля решил сделать это с помощью компьютера. Помогите ему.
Во входном файле содержится число \(n\) (0 ≤ \(n\) ≤ 2 ×\(10^9\)).
Выходной файл должен содержать одно число – количество нечетных чисел в \(n\)-ой строке треугольника Паскаля.
0
1
5
4
7
8
Недавно один известный художник-абстракционист произвел на свет новый шедевр – картину «Два черных непересекающихся прямоугольника». Картина представляет собой прямоугольник \(m\)×\(n\), разбитый на квадраты 1×1, некоторые из которых закрашены любимым цветом автора – черным. Федя – не любитель абстрактных картин, однако ему стало интересно, действительно ли на картине изображены два непересекающихся прямоугольника. Помогите ему это узнать. Прямоугольники не пересекаются в том смысле, что они не имеют общих клеток.
Первая строка входного файла содержит числа \(m\) и \(n\) (1 ≤ \(m\), \(n\) ≤ 200). Следующие \(m\) строк содержат описание рисунка. Каждая строка содержит ровно \(n\) символов. Символ «.» обозначает пустой квадрат, а символ «#» – закрашенный.
Если рисунок можно представить как два непересекающихся прямоугольника, выведите в первой строке «YES», а в следующих m строках выведите рисунок в том же виде, в каком он задан во входном файле, заменив квадраты, соответствующие первому прямоугольнику на символ «a», а второму – на символ «b». Если решений несколько, выведите любое.
Если же этого сделать нельзя, выведите в выходной файл «NO».
2 1 # .
NO
2 2 .. ##
YES .. ab
1 3 ###
YES abb
3 1 . # #
YES . a b