Рассмотрим две строки \(α\) и \(β\). Их конкатенацией называется строка, получающаяся в результате приписывания к строке \(α\) строки \(β\). Эта строка обозначается \(αβ\). Например, конкатенацией строк `ab' и `ac' будет строка `abac'. Очевидно, что это определение естественным образом распространяется на конкатенацию произвольного количества строк. Так, конкатенацией нуля строк будет пустая строка, а конкатенацией одной строки будет она сама.
Рассмотрим некоторое множество \(W\), состоящее из строк. Назовём его замыканием множество \(W\)*, состоящее из тех и только тех строк, которые можно получить в результате конкатенации нуля и более строк из множества \(W\). Таким образом, множество \(W\)* содержит пустую строку, и если строка α принадлежит множеству \(W\)*, а строка \(β\) принадлежит множеству \(W\), то строка \(αβ\) принадлежит множеству \(W\)*. Более того, все элементы множества \(W\)* можно представить в таком виде, то есть \(W\)* является пересечением всех множеств с указанными выше свойствами. Например, если \(W\)={a,ab}, то \(W\)* состоит из всех строк, в которых перед каждой буквой `b' идёт хотя бы одна буква `a'.
Задано некоторое множество строк \(W\). Требуется найти множество \(X\), такое, что \(W\)*=\(X\)* и множество \(X\) имеет минимальное возможное число элементов. В случае, если таких множеств несколько, подходит любое из них. Например, если \(W\)={a,aabb,ab,ac,b,bac}, то единственным множеством, удовлетворяющим условиям задачи будет множество {a,ac,b}.
Входной файл состоит из набора строк, каждая из которых является элементом множества \(W\). Каждая строка из множества \(W\) встречается во входном файле хотя бы один раз. Суммарная длина всех строк во входном файле не превосходит \(10^4\). Количество строк во входном файле не превосходит \(10^4\). После каждой строки из множества \(W\) во входном файле идёт перевод строки (пара символов с ASCII кодами 13 и 10). Строки состоят из символов с ASCII кодами от 33 до 126 включительно.
Выведите в выходной файл элементы одного из множеств \(X\), удовлетворяющих условиям задачи. Каждая строка множества \(X\) должна быть выведена ровно один раз. Строки должны идти в лексикографическом порядке (лексикографический порядок используется в словарях, в этом порядке строка `ab' меньше строки `aba' и строка `ab' меньше строки `ac'). После каждой строки множества \(X\) должен идти один перевод строки.
a aabb ab ac b bac
a ac b
Вася любит решать головоломки со спичками. Чаще всего они формулируется следующим образом: дано изображение \(A\), составленное из спичек; переложите в нем минимальное количество спичек так, чтобы получилось изображение \(B\).
Например, из номера текущего командного чемпионата школьников Санкт-Петербурга по программированию, можно получить ромб с диагональю, переложив всего три спички.
Головоломки, которые решает Вася, всегда имеют решение. Это значит, что набор спичек, используемый в изображении \(A\), совпадает с набором спичек, используемым в изображении \(B\). Кроме того, в одном изображении никогда не встречаются две спички, у которых есть общий участок ненулевой длины (то есть спички могут пересекаться, но не могут накладываться друг на друга).
Вася устал решать головоломки вручную, и теперь он просит вас написать, программу, которая будет решать головоломки за него. Программа будет получать описания изображений \(A\) и \(B\) и должна найти минимальное количество спичек, которые надо переложить в изображении \(A\), чтобы полученная картинка получалась из \(B\) параллельным переносом.
В первой строке входного файла содержится целое число \(n\) – количество спичек в каждом из изображений (1 ≤ \(n\) ≤ 1000).
В следующих n строках записаны координаты концов спичек на изображении \(A\). Спичка номер \(i\) описывается целыми числами \(x_{1i}\), \(y_{1i}\), \(x_{2i}\), \(y_{2i}\) – координатами ее концов. Следующие \(n\) строк содержат описание изображения \(B\) в таком же формате. Набор длин этих спичек совпадает с набором длин спичек с изображения \(A\).
Все координаты по абсолютной величине не превосходят \(10^4\). Все спички имеют ненулевую длину, то есть \(x_{1i}\) ≠ \(x_{2i}\) или \(y_{1i}\) ≠ \(y_{2i}\).
Выведите в выходной файл минимальное количество спичек, которые следует переложить, чтобы изображение \(A\) совпало с изображением \(B\), с точностью до параллельного переноса.
5 0 0 1 2 1 0 0 2 2 0 2 2 4 0 3 2 4 0 5 2 9 -1 10 1 10 1 9 3 8 1 10 1 8 1 9 -1 8 1 9 3
3