Страница: << 1 2 Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Задано число N. Требуется найти наименьшее число с суммой цифрой, равной N, которое делится на N.

Для заданного числа \(n\) найдите наименьшее положительное целое число с суммой цифр \(n\), которое делится на \(n\).

Входные данные

Во входном файле содержатся целое число \(n\) (1 ≤ \(n\) ≤ 1000).

Выходные данные

Выходной файл должен содержать искомое число. Ведущие нули выводить не разрешается.

Примеры
Входные данные
1
Выходные данные
1
Входные данные
10
Выходные данные
190
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Требуется определить количество нечетных чисел в заданной строке треугольника Паскаля.

Треугольник Паскаля – это бесконечный треугольник из чисел, который имеет следующий вид:

Строки треугольника Паскаля нумеруются с нуля, числа в каждой строке также нумеруются с нуля. Нулевая строка содержит единственное число – единицу, а каждая следующая содержит на одно число больше, чем предыдущая. Нулевое и последнее число в каждой строке равны единице, а каждое из остальных равно сумме двух чисел предыдущей строки, расположенных над ним.

Таким образом, \(i\)-ая строка содержит \(i\) + 1 число. Если обозначить \(j\)-ый элемент \(i\)-ой строки как \(a_i\),\(j_,\) то выполняется равенство \(a_i\),\(j\) = \(a_i\) - 1,\(j\) - 1 + \(a_i\)-1,\(j\). Заметим, что это равенство выполняется и для крайних элементов, если положить отсутствующие элементы предыдущей строки (элементы с номерами -1 и \(i\)) равными нулю.

Коля хочет узнать, сколько нечетных чисел в n-ой строке треугольника Паскаля. Он начал рисовать треугольник, но очень скоро тот перестал помещаться на листочек. Тогда Коля решил сделать это с помощью компьютера. Помогите ему.

Входные данные

Во входном файле содержится число \(n\) (0 ≤ \(n\) ≤ 2 ×\(10^9\)).

Выходные данные

Выходной файл должен содержать одно число – количество нечетных чисел в \(n\)-ой строке треугольника Паскаля.

Примеры
Входные данные
0
Выходные данные
1
Входные данные
5
Выходные данные
4
Входные данные
7
Выходные данные
8
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
На прямоугольном поле есть закрашенные и незакрашенные клетки. Требуется определить, можно ли разбить закрашенные клетки на два прямоугольника, со сторонами, параллельными осям координат.

Недавно один известный художник-абстракционист произвел на свет новый шедевр – картину «Два черных непересекающихся прямоугольника». Картина представляет собой прямоугольник \(m\)×\(n\), разбитый на квадраты 1×1, некоторые из которых закрашены любимым цветом автора – черным. Федя – не любитель абстрактных картин, однако ему стало интересно, действительно ли на картине изображены два непересекающихся прямоугольника. Помогите ему это узнать. Прямоугольники не пересекаются в том смысле, что они не имеют общих клеток.

Входные данные

Первая строка входного файла содержит числа \(m\) и \(n\) (1 ≤ \(m\), \(n\) ≤ 200). Следующие \(m\) строк содержат описание рисунка. Каждая строка содержит ровно \(n\) символов. Символ «.» обозначает пустой квадрат, а символ «#» – закрашенный.

Выходные данные

Если рисунок можно представить как два непересекающихся прямоугольника, выведите в первой строке «YES», а в следующих m строках выведите рисунок в том же виде, в каком он задан во входном файле, заменив квадраты, соответствующие первому прямоугольнику на символ «a», а второму – на символ «b». Если решений несколько, выведите любое.

Если же этого сделать нельзя, выведите в выходной файл «NO».

Примеры
Входные данные
2 1
#
.
Выходные данные
NO
Входные данные
2 2
..
##
Выходные данные
YES
..
ab
Входные данные
1 3
###
Выходные данные
YES
abb
Входные данные
3 1
.
#
#
Выходные данные
YES
.
a
b
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Выписаны двоичные числа от 1 до N. В каждом из них красным выделяется каждый k-ый ноль (ведущие нули не учитываются). Необходимо подсчитать суммарное количество красных нулей.

Толик только что узнал, что на свете существует двоичная система счисления. Обрадованный этим, он записал в столбик двоичные формы чисел 1, 2, …, \(n\). Получились числа 1, 10, 11, 100, 101, 110, 111, …

После этого он стер все написанные единицы и стал изучать расположение нулей. Он выбрал число \(k\) и в каждой строке, идя слева направо, выделил красным цветом каждый \(k\)-ый ноль, начиная с первого. Таким образом, оказались выделенными нули с номерами 1, \(k\) + 1, 2\(k\) + 1, … Например если \(k\) = 2, \(n\) = 56 то получились бы такие строки:

(красные нули выделены жирным шрифтом и подчеркнуты)

Теперь Толику интересно, сколько же ноликов он выделил. Помогите ему их посчитать.

Входные данные

Во входном файле содержатся числа \(n\) и \(k\) (1 ≤ \(n\) < \(2^{31}\), 1 ≤ \(k\) ≤ 30).

Выходные данные

Выходной файл должен содержать одно число – количество красных нулей.

Примеры
Входные данные
5 1
Выходные данные
4
Входные данные
23 3
Выходные данные
20

Страница: << 1 2 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест