Алгоритмы(1657 задач)
Структуры данных(279 задач)
Интерактивные задачи(17 задач)
Другое(54 задач)
Разбиения числа \(n\) на слагаемые — это набор целых положительных чисел, сумма которых равна \(n\). При этом разбиения, отличающиеся лишь порядком слагаемых, считаются одинаковыми, поэтому можно считать, что слагаемые в разбиении упорядочены по неубыванию.
Например, существует 7 разбиений числа 5 на слагаемые:
5 = 1 + 1 + 1 + 1 + 1 5 = 1 + 1 + 1 + 2 5 = 1 + 1 + 3 5 = 1 + 2 + 2 5 = 1 + 4 5 = 2 + 3 5 = 5 |
В приведенном примере разбиения упорядочены лексикографически — сначала по первому слагаемому в разбиении, затем по второму, и так далее. В этой задаче вам потребуется по заданному разбиению на слагаемые найти следующее в лексикографическом порядке разбиение.
Входной файл содержит одну строку — разбиение числа \(n\) на слагаемые (\(1 \le n \le 100 000\)). Слагаемые в разбиении следуют в неубывающем порядке.
Выведите в выходной файл одну строку — разбиение числа \(n\) на слагаемые, следующее в лексикографическом порядке после приведенного во входном файле. Если во входном файле приведено последнее разбиение числа \(n\) на слагаемые, выведите «No solution».
5=1+1+3
5=1+2+2
5=5
No solution
Недавно разведка Флатландии перехватила секретный документ. Сотрудники первого отдела разведки подозревают, что это список пар городов, между которыми в соседней Берляндии проложены автомагистрали. Попытавшись сопоставить номера городов с городами Берляндии, сотрудники убедились что это можно сделать.
Однако сотрудники второго отдела высказали другое предположение. Они предположили, что этот список — это в точности список пар городов, между которыми в Берляндии нет автомагистрали. Попытавшись сопоставить номера городов с городами в Берляндии, они также убедились, что это можно сделать.
Директор разведки в затруднении. Решив проверить, возможно ли такое, он дал задание сотрудникам третьего отдела. Директор попросил их выяснить, может ли так быть, что между некоторыми городами в Берляндии проложены автомагистрали, а между некоторыми — нет, и существует самодвойственный список пар. Список пар целых чисел от 1 до \(n\) называется самодвойственным, если можно занумеровать города так, чтобы он задавал все пары городов, между которыми есть автомагистраль, а можно перенумеровать города таким образом, чтобы тот же самый список задавал все пары городов, между которыми автомагистрали нет.
Помогите сотрудникам третьего отдела решить поставленную задачу.
Входной файл содержит одно число \(n\) — количество городов в Берляндии (\(1 \le n \le 100\)).
Если ответа на задачу не существует, выведите в первой строке выходного файла слово «NO».
В противном случае в первой строке выходного файла слово «YES». На второй строке выведите \(m\) — количество автомагистралей в Берляндии. Занумеруем города некоторым образом от 1 до n.
Далее выведите \(m\) строк по два числа — пары городов, между которыми есть автомагистрали.
Между парой городов должно быть не более одной автомагистрали, автомагистраль не должна соединять город сам с собой.
На следующей строке выведите \(n\) целых чисел, для города \(i\) выведите число \(a_i\), такое, что если в приведенном выше списке из \(m\) пар заменить все числа \(i\) на \(a_i\), то получится в точности список всех пар городов, между которыми нет автомагистрали. Все \(a_i\) должны быть различны.
2
NO
4
YES 3 1 2 2 3 3 4 3 1 4 2
В цирке планируется грандиозное театрализованное шоу с участием львов и тигров. Чтобы уменьшить агрессию хищников, дрессировщики хотят составить программу таким образом, чтобы львы и тигры никогда не встречались на сцене.
Шоу состоит из \(n\) небольших представлений, в каждом из которых могут участвовать или львы, или тигры (также может случиться, что в представлении не участвуют ни те, ни другие). Представление \(i\) начинается через \(s_i\) минут от начала шоу и продолжается \(t_i\) минут. При этом в некоторые моменты времени на сцене могут идти одновременно несколько представлений (в этом случае в них не могут участвовать разные виды хищников).
Публика любит и представления со львами, и представления с тиграми. Дрессировщики просят вас помочь им распределить представления между львами и тиграми так, чтобы минимум из числа представлений с львами и числа представлений с тиграми был как можно больше.
Первая строка входного файла содержит число \(n\) (\(1 \le n \le 200\)). Следующие \(n\) строк содержат пары чисел \(s_i\), \(t_i\). (\(0 \le s_i \le 10^9\), \(1 \le t_i \le 10^9\))
Выведите в выходной файл \(n\) чисел. Число номер \(i\) должно быть равно \(1\), если в \(i\)-ом представлении участвуют львы, или \(2\), если участвуют тигры, или \(0\), если не участвуют ни те ни другие.
5 8 3 0 7 4 5 1 2 11 3 0 7 1 3 4 9 8 11 11 14
2 1 0 1 2
Олег — известный поклонник соревнований по программированию. Он знает всех участников всех соревнований за последние десять лет и может про любого участника сказать, сколько задач решила команда с его участием на любом соревновании. И еще Олег очень любит теорию чисел.
В таблице результатов соревнования по программированию команды упорядочены по убыванию количества решенных задач. Олег называет таблицу результатов красивой, если для всех команд количество решенных ими задач равно нулю или является делителем количества задач на соревновании. Когда какая-нибудь команда сдает задачу, количество сданных задач у нее увеличивается на один. Никакая команда не может сдать две или более задач одновременно, также две команды не могут одновременно сдать задачу.
Глядя на красивую таблицу результатов, Олег заинтересовался: а сколько еще задач смогут суммарно сдать команды так, чтобы после каждой сданной задачи таблица результатов оставалась красивой? Помогите ему выяснить это.
Первая строка входного файла содержит два целых числа: \(n\) и \(m\) — количество команд и количество задач на соревновании, соответственно (\(1 \le n \le 100\), \(1 \le m \le 10^9\)). Вторая строка содержит n целых чисел, упорядоченных по невозрастанию: для каждой команды задано, сколько задач она решила. Гарантируется, что все отличные от нуля числа являются делителями числа \(m\).
Выведите в выходной файл одно число: максимальное количество задач, которое суммарно могут еще сдать команды так, чтобы после каждой сданной задачи таблица результатов оставалась красивой.
Комментарий к примеру тестов.
В приведенном примере команды на 4 и 5 месте могут сдать по одной задаче, команда на 6 месте три, а команда на 7 месте — 4. Суммарно таким образом команды смогут сдать 9 задач
7 12 12 6 4 3 3 1 0
9